Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Viability of the advanced adaptive neuro-fuzzy inference system model on reservoir evaporation process simulation: case study of Nasser Lake in Egypt
Institute of Research and Development, Duy Tan University, Da Nang, Vietnam.
Department of Civil Engineering, Al-Esraa University College, Baghdad, Iraq.
Water Resources Engineering Department, College of Engineering, University of Duhok, Duhok, Iraq.
Irrigation and Hydraulics Engineering Department, Civil Engineering Department, Faculty of Engineering, Tanta University, Tanta, Egypt.
Vise andre og tillknytning
2019 (engelsk)Inngår i: Engineering Applications of Computational Fluid Mechanics, ISSN 1994-2060, E-ISSN 1997-003X, Vol. 13, nr 1, s. 878-891Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Reliable prediction of evaporative losses from reservoirs is an essential component of reservoir management and operation. Conventional models generally used for evaporation prediction have a number of drawbacks as they are based on several assumptions. A novel approach called the co-active neuro-fuzzy inference system (CANFIS) is proposed in this study for the modeling of evaporation from meteorological variables. CANFIS provides a center-weighted set rather than global weight sets for predictor–predictand relationship mapping and thus it can provide a higher prediction accuracy. In the present study, adjustments are made in the back-propagation algorithm of CANFIS for automatic updating of membership rules and further enhancement of its prediction accuracy. The predictive ability of the CANFIS model is validated with three well-established artificial intelligence (AI) models. Different statistical metrics are computed to investigate the prediction efficacy. The results reveal higher accuracy of the CANFIS model in predicting evaporation compared to the other AI models. CANFIS is found to be capable of modeling evaporation from mean temperature and relative humidity only, with a Nash–Sutcliffe efficiency of 0.93, which is much higher than that of the other models. Furthermore, CANFIS improves the prediction accuracy by 9.2–55.4% compared to the other AI models.

sted, utgiver, år, opplag, sider
UK: Taylor & Francis, 2019. Vol. 13, nr 1, s. 878-891
Emneord [en]
reservoir operation, evaporation prediction, artificial intelligent models, CANFIS, arid environment
HSV kategori
Forskningsprogram
Geoteknik
Identifikatorer
URN: urn:nbn:se:ltu:diva-75461DOI: 10.1080/19942060.2019.1647879ISI: 000480244200001OAI: oai:DiVA.org:ltu-75461DiVA, id: diva2:1341630
Merknad

Validerad;2019;Nivå 2;2019-08-13 (johcin)

Tilgjengelig fra: 2019-08-09 Laget: 2019-08-09 Sist oppdatert: 2019-08-30bibliografisk kontrollert

Open Access i DiVA

fulltext(3851 kB)3 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 3851 kBChecksum SHA-512
3a921a7afb248981e9fbdc29c6d3f29aa19e8a38f56c3bdaf639161b3d1aa3ad18130f2f97b70339ad1ef277914f020e0c8f6ac09f1d22b7cb91ff1420a08528
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekst

Personposter BETA

Al-Ansari, Nadhir

Søk i DiVA

Av forfatter/redaktør
Al-Ansari, Nadhir
Av organisasjonen
I samme tidsskrift
Engineering Applications of Computational Fluid Mechanics

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 3 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 18 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf