Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Effective cluster interactions and pre–precipitate morphology in binary Al-based alloys
Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap. Department of Materials Science and Engineering, KTH Royal Institute of Technology, Stockholm, Sweden. Laboratory for Mechanics of Gradient Nanomaterials, Nosov Magnitogorsk State Technical University, Magnitogorsk, Russia.
National Research Centre, Kurchatov Institute, Moscow, Russia. Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow Region, Russia.
Institute of Metal Physics, Ural Division RAS, Ekaterinburg, Russia. Institute of Quantum Materials Science, Ekaterinburg, Russia.
Department of Materials Science and Engineering, KTH Royal Institute of Technology, Stockholm, Sweden. Institute of Metal Physics, Ural Division RAS, Ekaterinburg, Russia.
2019 (Engelska)Ingår i: Acta Materialia, ISSN 1359-6454, E-ISSN 1873-2453, Vol. 179, s. 70-84Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The strengthening by coherent, nano-sized particles of metastable phases (pre-precipitates) continues to be the main design principle for new high-performance aluminium alloys. To describe the formation of such pre-precipitates in Al–Cu, Al–Mg, Al–Zn, and Al–Si alloys, we carry out cluster expansions of ab initio calculated energies for supercell models of the dilute binary Al-rich solid solutions. Effective cluster interactions, including many-body terms and strain-induced contributions due to the lattice relaxations around solute atoms, are thus systematically derived. Monte Carlo and statistical kinetic theory simulations, parameterized with the obtained effective cluster interactions, are then performed to study the early stages of decomposition in the binary Al-based solid solutions. We show that this systematic approach to multi-scale modelling is capable of incorporating the essential physical contributions (usually referred to as atomic size and electronic structure factors) to the free energy, and is therefore able to correctly describe the ordering temperatures, atomic structures, and morphologies of pre-precipitates in the four studied alloy systems.

Ort, förlag, år, upplaga, sidor
Elsevier, 2019. Vol. 179, s. 70-84
Nyckelord [en]
Aluminium-based alloys, Guinier-Preston zones, Ab initio based modeling
Nationell ämneskategori
Annan fysik
Forskningsämne
Tillämpad fysik
Identifikatorer
URN: urn:nbn:se:ltu:diva-75632DOI: 10.1016/j.actamat.2019.08.011ISI: 000488417400007Scopus ID: 2-s2.0-85070954777OAI: oai:DiVA.org:ltu-75632DiVA, id: diva2:1344553
Anmärkning

Validerad;2019;Nivå 2;2019-09-03 (johcin)

Tillgänglig från: 2019-08-21 Skapad: 2019-08-21 Senast uppdaterad: 2019-10-18Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Gorbatov, Oleg

Sök vidare i DiVA

Av författaren/redaktören
Gorbatov, Oleg
Av organisationen
Materialvetenskap
I samma tidskrift
Acta Materialia
Annan fysik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 30 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf