Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Intelligent data-driven prognostic methodologies for the real-time remaining useful life until the end-of-discharge estimation of the Lithium-Polymer batteries of unmanned aerial vehicles with uncertainty quantification
Faculty of Aerospace Engineering, TU Delft, the Netherlands.
Luleå tekniska universitet, Institutionen för system- och rymdteknik, Signaler och system.ORCID-id: 0000-0001-7631-002x
Department of Mechanical Engineering & Aeronautics, University of Patras, Greece.
Luleå tekniska universitet, Institutionen för system- och rymdteknik, Signaler och system.
Visa övriga samt affilieringar
2019 (Engelska)Ingår i: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 254, artikel-id 113677Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

In this paper, the discharge voltage is utilized as a critical indicator towards the probabilistic estimation of the Remaining Useful Life until the End-of-Discharge of the Lithium-Polymer batteries of unmanned aerial vehicles. Several discharge voltage histories obtained during actual flights constitute the in-house developed training dataset. Three data-driven prognostic methodologies are presented based on state-of-the-art as well as innovative mathematical models i.e. Gradient Boosted Trees, Bayesian Neural Networks and Non-Homogeneous Hidden Semi Markov Models. The training and testing process of all models is described in detail. Remaining Useful Life prognostics in unseen data are obtained from all three methodologies. Beyond the mean estimates, the uncertainty associated with the point predictions is quantified and upper/lower confidence bounds are also provided. The Remaining Useful Life prognostics during six random flights starting from fully charged batteries are presented, discussed and the pros and cons of each methodology are highlighted. Several special metrics are utilized to assess the performance of the prognostic algorithms and conclusions are drawn regarding their prognostic capabilities and potential.

Ort, förlag, år, upplaga, sidor
Elsevier, 2019. Vol. 254, artikel-id 113677
Nyckelord [en]
Remaining useful life, Data-driven prognostics, UAVs, Li-Po batteries, End of discharge, Machine learning
Nationell ämneskategori
Robotteknik och automation Reglerteknik
Forskningsämne
Reglerteknik
Identifikatorer
URN: urn:nbn:se:ltu:diva-75673DOI: 10.1016/j.apenergy.2019.113677Scopus ID: 2-s2.0-85070739542OAI: oai:DiVA.org:ltu-75673DiVA, id: diva2:1345203
Anmärkning

Validerad;2019;Nivå 2;2019-08-27 (johcin)

Tillgänglig från: 2019-08-23 Skapad: 2019-08-23 Senast uppdaterad: 2019-08-27Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Mansouri, Sina SharifKarvelis, PetrosNikolakopoulos, George

Sök vidare i DiVA

Av författaren/redaktören
Mansouri, Sina SharifKarvelis, PetrosNikolakopoulos, George
Av organisationen
Signaler och system
I samma tidskrift
Applied Energy
Robotteknik och automationReglerteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 3 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf