Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Data-driven approach to study the polygonization of high-speed railway train wheel-sets using field data of China’s HSR train
Department of Industrial Engineering, Tsinghua University, Beijing, China.
Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Drift, underhåll och akustik.ORCID-id: 0000-0002-7458-6820
Department of Industrial Engineering, Tsinghua University, Beijing, China.
Department of Industrial Engineering, Tsinghua University, Beijing, China.
2020 (Engelska)Ingår i: Measurement, ISSN 0263-2241, E-ISSN 1873-412X, Vol. 149, artikel-id 107022Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Environmental factors, like seasonality, have been proved to exert significant impact on reliability of China high-speed rail train wheels in this article. Most studies on polygonization of train wheels are based on physical models, mathematical models or simulation systems. Normally, characteristics and mechanisms of wheel polygonization are studied under ideal conditions without considering the impact of the environment. However, in practical use, there are many irregular wear wheels and irregular wear cannot be explained by theoretical models with assumptions of ideal conditions. We look at two possible factors in polygonization: seasonality and proximity to engines. Our analysis of field data shows the environmental factor has more impact on wheel polygonization than the mechanical factor. Based on the Bayesian models, the mean time to failure of the wheels under different operation conditions is conducted. A case study of China’s HSR train wheels is conducted to confirm the finding. The case study shows the degree of polygonal wear is much more severe in summer than other seasons. The finding may give a totally new research perspective on polygonization of train wheels. We use Bayesian analysis because this method is useful for small and incomplete data sets. We propose three Bayesian data-driven models.

Ort, förlag, år, upplaga, sidor
Elsevier, 2020. Vol. 149, artikel-id 107022
Nyckelord [en]
railway safety, prognostics and health management, mean time to failure, Bayesian methods, polygonization, wheel-sets
Nationell ämneskategori
Annan samhällsbyggnadsteknik
Forskningsämne
Drift och underhållsteknik
Identifikatorer
URN: urn:nbn:se:ltu:diva-75933DOI: 10.1016/j.measurement.2019.107022Scopus ID: 2-s2.0-85072207003OAI: oai:DiVA.org:ltu-75933DiVA, id: diva2:1349854
Anmärkning

Validerad;2019;Nivå 2;2019-09-23 (johcin)

Tillgänglig från: 2019-09-10 Skapad: 2019-09-10 Senast uppdaterad: 2019-09-23Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Lin, Jing

Sök vidare i DiVA

Av författaren/redaktören
Lin, Jing
Av organisationen
Drift, underhåll och akustik
I samma tidskrift
Measurement
Annan samhällsbyggnadsteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 21 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf