Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Predictive Health Monitoring for Aircraft Systems using Decision Trees and Genetic Evolution
Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Drift, underhåll och akustik.
2019 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Reducing unscheduled maintenance is important for aircraft operators. There are significant costs if flights must be delayed or cancelled, for example, if spares are not available and have to be shipped across the world. This thesis describes three methods of aircraft health condition monitoring and prediction; one for system monitoring, one for forecasting and one combining the two other methods for a complete monitoring and prediction process. Together, the three methods allow organizations to forecast possible failures. The first two use decision trees for decision-making and genetic optimization to improve the performance of the decision trees and to reduce the need for human interaction. Decision trees have several advantages: the generated code is quickly and easily processed, it can be altered by human experts without much work, it is readable by humans, and it requires few resources for learning and evaluation. The readability and the ability to modify the results are especially important; special knowledge can be gained and errors produced by the automated code generation can be removed.

A large number of data sets is needed for meaningful predictions. This thesis uses two data sources: first, data from existing aircraft sensors, and second, sound and vibration data from additionally installed sensors. It draws on methods from the field of big data and machine learning to analyse and prepare the data sets for the prediction process.

Ort, förlag, år, upplaga, sidor
Luleå University of Technology, 2019. , s. 259
Serie
Doctoral thesis / Luleå University of Technology 1 jan 1997 → …, ISSN 1402-1544
Nyckelord [en]
Condition Monitoring, Remaining Useful Life Prediction, Decision Tree, Genetic Algorithm, Fuzzy Decision Tree Evaluation, System Monitoring, Aircraft Health Monitoring, Feature Extraction, Feature Selection, Data Driven, Health Prognostic, Knowledge Based System, Supervised Learning, Data-Driven Predictive Health Monitoring, Health Indicators, Machine Learning, Big Data, Pattern Recognition
Nationell ämneskategori
Tillförlitlighets- och kvalitetsteknik
Forskningsämne
Drift och underhållsteknik
Identifikatorer
URN: urn:nbn:se:ltu:diva-76703ISBN: 978-91-7790-500-4 (tryckt)ISBN: 978-91-7790-501-1 (digital)OAI: oai:DiVA.org:ltu-76703DiVA, id: diva2:1370135
Disputation
2019-12-20, F1031, Luleå, 10:00 (Engelska)
Opponent
Handledare
Tillgänglig från: 2019-11-14 Skapad: 2019-11-14 Senast uppdaterad: 2019-11-28Bibliografiskt granskad

Open Access i DiVA

fulltext(24132 kB)16 nedladdningar
Filinformation
Filnamn FULLTEXT02.pdfFilstorlek 24132 kBChecksumma SHA-512
9d3c249e33a68fce65a69aac2d317a1149487c121e22d098503436f68ac40067028da11dd35d16f50c9cac05741007345f54ab372bd3dd5cdb75e0a834371d1a
Typ fulltextMimetyp application/pdf

Av organisationen
Drift, underhåll och akustik
Tillförlitlighets- och kvalitetsteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 16 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

isbn
urn-nbn

Altmetricpoäng

isbn
urn-nbn
Totalt: 56 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf