Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Bag-of-Visual-Words for Cattle Identification from Muzzle Print Images
Luleå tekniska universitet, Institutionen för system- och rymdteknik, Datavetenskap. Faculty of Engineering, Al-Azhar University, Qena, Egypt. Centre for Security, Communications and Network Research, University of Plymouth, Plymouth, UK.ORCID-id: 0000-0002-3800-0757
Department of Computer Science, Faculty of Computers and Information, South Valley University, Qena, Egypt.
2019 (Engelska)Ingår i: Applied Sciences, E-ISSN 2076-3417, Vol. 9, nr 22, artikel-id 4914Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Cattle, buffalo and cow identification plays an influential role in cattle traceability from birth to slaughter, understanding disease trajectories and large-scale cattle ownership management. Muzzle print images are considered discriminating cattle biometric identifiers for biometric-based cattle identification and traceability. This paper presents an exploration of the performance of the bag-of-visual-words (BoVW) approach in cattle identification using local invariant features extracted from a database of muzzle print images. Two local invariant feature detectors—namely, speeded-up robust features (SURF) and maximally stable extremal regions (MSER)—are used as feature extraction engines in the BoVW model. The performance evaluation criteria include several factors, namely, the identification accuracy, processing time and the number of features. The experimental work measures the performance of the BoVW model under a variable number of input muzzle print images in the training, validation, and testing phases. The identification accuracy values when utilizing the SURF feature detector and descriptor were 75%, 83%, 91%, and 93% for when 30%, 45%, 60%, and 75% of the database was used in the training phase, respectively. However, using MSER as a points-of-interest detector combined with the SURF descriptor achieved accuracies of 52%, 60%, 67%, and 67%, respectively, when applying the same training sizes. The research findings have proven the feasibility of deploying the BoVW paradigm in cattle identification using local invariant features extracted from muzzle print images. 

Ort, förlag, år, upplaga, sidor
MDPI, 2019. Vol. 9, nr 22, artikel-id 4914
Nyckelord [en]
computer vision, biometrics, cattle identification, bag-of-visual-words, muzzle print images
Nationell ämneskategori
Systemvetenskap, informationssystem och informatik med samhällsvetenskaplig inriktning
Forskningsämne
Informationssystem
Identifikatorer
URN: urn:nbn:se:ltu:diva-76740DOI: 10.3390/app9224914Scopus ID: 2-s2.0-85075233197OAI: oai:DiVA.org:ltu-76740DiVA, id: diva2:1371077
Anmärkning

Validerad;2019;Nivå 2;2019-11-19 (johcin)

Tillgänglig från: 2019-11-19 Skapad: 2019-11-19 Senast uppdaterad: 2019-12-09Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Awad, Ali Ismail

Sök vidare i DiVA

Av författaren/redaktören
Awad, Ali Ismail
Av organisationen
Datavetenskap
I samma tidskrift
Applied Sciences
Systemvetenskap, informationssystem och informatik med samhällsvetenskaplig inriktning

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 15 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf