Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Bag-of-Visual-Words for Cattle Identification from Muzzle Print Images
Luleå tekniska universitet, Institutionen för system- och rymdteknik, Datavetenskap. Faculty of Engineering, Al-Azhar University, Qena, Egypt. Centre for Security, Communications and Network Research, University of Plymouth, Plymouth, UK.ORCID-id: 0000-0002-3800-0757
Department of Computer Science, Faculty of Computers and Information, South Valley University, Qena, Egypt.
2019 (engelsk)Inngår i: Applied Sciences, E-ISSN 2076-3417, Vol. 9, nr 22, artikkel-id 4914Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Cattle, buffalo and cow identification plays an influential role in cattle traceability from birth to slaughter, understanding disease trajectories and large-scale cattle ownership management. Muzzle print images are considered discriminating cattle biometric identifiers for biometric-based cattle identification and traceability. This paper presents an exploration of the performance of the bag-of-visual-words (BoVW) approach in cattle identification using local invariant features extracted from a database of muzzle print images. Two local invariant feature detectors—namely, speeded-up robust features (SURF) and maximally stable extremal regions (MSER)—are used as feature extraction engines in the BoVW model. The performance evaluation criteria include several factors, namely, the identification accuracy, processing time and the number of features. The experimental work measures the performance of the BoVW model under a variable number of input muzzle print images in the training, validation, and testing phases. The identification accuracy values when utilizing the SURF feature detector and descriptor were 75%, 83%, 91%, and 93% for when 30%, 45%, 60%, and 75% of the database was used in the training phase, respectively. However, using MSER as a points-of-interest detector combined with the SURF descriptor achieved accuracies of 52%, 60%, 67%, and 67%, respectively, when applying the same training sizes. The research findings have proven the feasibility of deploying the BoVW paradigm in cattle identification using local invariant features extracted from muzzle print images. 

sted, utgiver, år, opplag, sider
MDPI, 2019. Vol. 9, nr 22, artikkel-id 4914
Emneord [en]
computer vision, biometrics, cattle identification, bag-of-visual-words, muzzle print images
HSV kategori
Forskningsprogram
Informationssystem
Identifikatorer
URN: urn:nbn:se:ltu:diva-76740DOI: 10.3390/app9224914Scopus ID: 2-s2.0-85075233197OAI: oai:DiVA.org:ltu-76740DiVA, id: diva2:1371077
Merknad

Validerad;2019;Nivå 2;2019-11-19 (johcin)

Tilgjengelig fra: 2019-11-19 Laget: 2019-11-19 Sist oppdatert: 2019-12-09bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Awad, Ali Ismail

Søk i DiVA

Av forfatter/redaktør
Awad, Ali Ismail
Av organisasjonen
I samme tidsskrift
Applied Sciences

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 15 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf