CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
En jämförelse mellan standardbrandkurvan och den teoretiska temperaturutvecklingen vid lägenhetsbränder
Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering.
2020 (Swedish)Independent thesis Basic level (professional degree), 210 HE creditsStudent thesis
Abstract [sv]

När byggnadsdelars brandmotstånd provas och klassificeras används nästan enbart standardbrandkurvan som definierad temperaturexponering över tid. Brandexponeringen beskrivs i den europeiska standarden EN 1363-1 samt den internationella standarden ISO 834. Standardbrandkurvan definierades för över 100 år sedan i en tid när kunskapen om branddimensionering var bristfällig. Dagens standardbrandkurva är till viss del modifierad men ser i stort sett ut på samma sätt som för 100 år sedan.

Ett annat sätt att dimensionera byggnadsdelar på är teoretiskt med hjälp av de parametriska brandkurvorna och materialmodellerna i Eurokoderna. I EN 1991-1-2 bilaga A presenteras en beräkningsmetod, Eurokodmodellen, som resulterar i temperatur-tidkurvor. Denna metod tar hänsyn till hur den slutgiltiga rumsgeometrin och brandlasten ser ut och till skillnad från standardbrandkurvan innehåller den dessutom en avsvalningsfas. Därav anses de parametriska brandkurvorna beskriva verkliga bränder bättre än vad standardbrandkurvan gör. I detta arbete har temperaturutvecklingen i lägenhets- och rumsbränder, baserade på riktiga lägenhetsgeometrier, beräknats med Eurokodmodellen i syfte att jämföra temperatur-tidkurvorna med standardbrandkurvans temperaturexponering.

Arbetet påbörjades med en litteraturstudie för att ge en djupare förståelse inom ämnet. Därefter samlades ritningar in från riktiga lägenheter som låg till grund för ett ritningsunderlag. Ritningsunderlaget användes sedan som input till beräkningsmetoden i EN 1991-1-2 bilaga A. För att underlätta beräkningarna skapades ett beräkningsdokument i Excel enligt Eurokodmodellen, där alla beräkningarna genomfördes.

Fyra olika scenarier skapades som innefattar två olika termiska trögheter samt två olika öppningsfaktorer för varje termisk tröghet. Anledningen till det var att det ansågs intressant att beakta i vilken utsträckning dessa två parametrar påverkar brandförlopp. Det resulterade i att scenario 3 med lägre termisk tröghet och högre öppningsfaktor var det scenario med kraftigast brandförlopp avseende tillväxthastighet och temperatur. I förhållande till standardbrandkurvan hade majoriteten av temperatur-tidkurvorna för scenario 3 en snabbare upphettningsfas med högre temperaturer fram till påbörjad avsvalningsfas. Scenario 2 med högre termisk tröghet och lägre öppningsfaktor resulterade i det motsatta, det vill säga ett längre brandförlopp med lägre temperaturer. Vid en jämförelse visar det sig att för majoriteten av kurvorna enligt scenario 2, så var temperaturen lägre än standardbrandkurvans under hela brandförloppet.

Öppningsfaktorn styr vilken mängd syre som kommer in i brandrummet, en högre öppningsfaktor betyder mer syre och intensivare brandförlopp. Termiska trögheten reglerar hur långsamt brandrummet värms upp, en låg termisk tröghet innebär att brandrummet värms upp snabbare och resulterar därmed i högre temperaturer då mindre energi absorberas av väggarna.

De beräknade lägenhets- och rumsbrändernas temperatur-tidkurvor stämde överlag bättre överens med standardbrandkurvan än förväntat. Givet att golv och tak är betong och väggar gips samt att brandlasten som definierats av Boverket är korrekt, är slutsatsen att standardbranden fungerarar bra i de flesta fallen. Dock är tillväxthastigheten i standardbranden lägre i vissa av scenarierna men har i många fall en temperatur vid 60 minuter som överstiger scenariernas. Det finns dock utrymme för utveckling av brandmotståndstester då en mängd av de beräknade lägenhets- och rumsbränderna översteg standardbrandkurvan under tidsperioder på över 30 minuter, något som hade kunnat äventyra de brandskyddstekniska kraven. Men eftersom majoriteten av de beräknade bränderna understeg standardbrandkurvan kan kraven och standardbrandkurvan oftast anses överdimensionerade utifrån genomfört arbete.

Abstract [en]

When construction parts are tested in order to try and classify the fire resistance, the standard fire curve is almost only used. The standard fire curve defines exposure from temperature over time. The fire exposure is described in the European standard EN 1363-1 and in the international standard ISO 834. The standard fire curve was defined for over 100 years ago, in a time when the knowledge in fire design was inadequate. Now days the standard fire curve is a bit modified, but it almost remains the same as the fire curve defined for 100 years ago.

Another way to design construction parts is theoretical by using parametric fire curves and the material models in the Eurocodes. In EN 1991-1-2 appendix A, a method to calculate parametric fire curves is presented, the method results in temperature-time curves and is known as the Eurocode model. This method considers the final room geometry and fire load, it also contains a cooling phase unlike the standard fire curve. Therefore, the Eurocode model is considered to be better at describing real fires. Compartment and room fires based on geometries from real apartments, will be calculated with the Eurocode method in order to compare the temperature-time curves against the exposure of the standard fire curve.

The project started with a study of former literature to give a deeper understanding in the current subject. After that, real apartment drawings were collected to represent real apartments. The drawings were then used as input for the calculation method in EN 1991-1-2 appendix A. To calculate in a more effective way an Excel spread sheet was created for the calculation method according to the Eurcode model, which later has been used for all calculations.

Four different scenarios were created, including two different thermal inertia and two different opening factors for each thermal inertia. The reason why was that it seemed to be interesting to examine in what extent these parameters affect a fire. It resulted in that scenario 3, the scenario with a lower thermal inertia and a higher opening factor, were the scenario with the fastest growing fire and with the highest temperatures. In comparison with the standard fire curve, scenario 3 had a majority of fires that exceeded the standard fire curve’s temperatures until the cooling phase begun. Scenario 2 which had a higher thermal inertia and a lower opening factor resulted in the opposite, that is a fire burning during a longer time with overall lower temperatures. In comparison with the standard fire curve scenario 2 had a majority of fires with lower exposure of temperature than the standard fire curve, during the entire time of fire.

The opening factor controls which amount of oxygen that flows in to the fire compartment, an increase of the amount of oxygen leads to a more intensive fire. The thermal inertia controls how slowly something gets warmed up, a lower thermal inertia means that the fire compartment warms up faster and resulting in higher temperatures as less energy is absorbed by the walls.

The calculated compartment and room fires temperature-time curves was in a better agreement with the standard fire curve than expected. Given that the floor and roof is concrete, the walls is gypsum and together with the assumption that the fire load defined by Boverket is correct, is the conclusion that the standard fire works well in most cases. However, the fire growth rate is lower for the standard fire than for some calculated cases but have a temperature at 60 minutes that exceeds most of the calculated cases at the same time. The fire resistance tests can still develop since a big amount of the calculated temperature-time curves exceeded the standard fire curve in periods of time over 30 minutes, something that could affect the fire protection requirements. But the majority of the calculated fires had an exposure of temperature under the standard fire curve. Therefore, the standard fire and the requirements can sometimes be considered oversized based on the work that been done.

Place, publisher, year, edition, pages
2020. , p. 83
Keywords [en]
The standard fire curve, parametric fire, compartment fires, the Eurocode model
Keywords [sv]
Standardbrandkurvan, parametrisk brand, lägenhetsbränder, Eurokodmodellen
National Category
Other Engineering and Technologies
Identifiers
URN: urn:nbn:se:ltu:diva-78370OAI: oai:DiVA.org:ltu-78370DiVA, id: diva2:1422023
External cooperation
Robert McNamee, Brandskyddslaget
Subject / course
Student thesis, at least 15 credits
Educational program
Fire Protection Engineer, bachelor's level
Supervisors
Examiners
Available from: 2020-04-07 Created: 2020-04-06 Last updated: 2020-04-07Bibliographically approved

Open Access in DiVA

fulltext(3194 kB)9 downloads
File information
File name FULLTEXT01.pdfFile size 3194 kBChecksum SHA-512
3dbb7859cbf638ed8b7f1d46d3c719ba2d4184f555b405526f3636ce267d8cd5373e363e4f02cdbcbe28751d5aa744fd93eab77f42bdde766f056281a4673c82
Type fulltextMimetype application/pdf

By organisation
Department of Civil, Environmental and Natural Resources Engineering
Other Engineering and Technologies

Search outside of DiVA

GoogleGoogle Scholar
Total: 9 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 92 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf