Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Ultra high strength steel sandwich for lightweight applications
Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Material- och solidmekanik.ORCID-id: 0000-0001-7895-1058
Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Material- och solidmekanik.ORCID-id: 0000-0001-5218-396X
Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Material- och solidmekanik.ORCID-id: 0000-0001-5206-6894
Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Material- och solidmekanik.ORCID-id: 0000-0003-0910-7990
2020 (Engelska)Ingår i: SN Applied Sciences, ISSN 2523-3963, E-ISSN 2523-3971, Vol. 2, nr 6, artikel-id 1040Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Methods for reducing weight of structural elements are important for a sustainable society. Over the recent years ultra high strength steel (UHSS) has been a successful material for designing light and strong components. Sandwich panels are interesting structural components to further explore areas where the benefits of UHSS can be utilized. The specific properties of sandwich panels make them suitable for stiffness applications and various cores have been studied extensively. In the present work, bidirectionally corrugated UHSS cores are studied experimentally and numerically. A UHSS core is manufactured by cold rolling and bonded to the skins by welding. Stiffness is evaluated experimentally in three-point bending. The tests are virtually reproduced using the finite element method. Precise discretization of the core requires large amounts of computational power, prolonging lead times for sandwich component development, which in the present work is addressed by homogenization, using an equivalent material formulation. Input data for the equivalent models is obtained by characterizing representative volume elements of the periodic cores under periodic boundary conditions. The homogenized panel reduces the number of finite elements and thus the computational time while maintaining accuracy. Numerical results are validated and agree well with experimental testing. Important findings from experimental and simulation results show that the suggested panels provide superior specific bending stiffness as compared to solid panels. This work shows that lightweight UHSS sandwiches with excellent stiffness properties can be manufactured and modeled efficiently. The concept of manufacturing a UHSS sandwich panel expands the usability of UHSS to new areas.

Ort, förlag, år, upplaga, sidor
Springer Nature, 2020. Vol. 2, nr 6, artikel-id 1040
Nyckelord [en]
UHSS, Sandwich, Lightweight, Modeling, Bidirectional core, Representative volume element (RVE)
Nationell ämneskategori
Teknisk mekanik
Forskningsämne
Hållfasthetslära
Identifikatorer
URN: urn:nbn:se:ltu:diva-78844DOI: 10.1007/s42452-020-2773-5ISI: 000538087000044Scopus ID: 2-s2.0-85100731139OAI: oai:DiVA.org:ltu-78844DiVA, id: diva2:1429408
Anmärkning

Validerad;2020;Nivå 2;2020-05-14 (alebob)

Tillgänglig från: 2020-05-11 Skapad: 2020-05-11 Senast uppdaterad: 2023-09-05Bibliografiskt granskad
Ingår i avhandling
1. A Study on Sandwich Structures: Development, Mechanical Characterization and Numerical Modeling
Öppna denna publikation i ny flik eller fönster >>A Study on Sandwich Structures: Development, Mechanical Characterization and Numerical Modeling
2021 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Legislative demands force the automotive industry to reduce greenhouse gas (GHG) emissions. At the same time, crashworthiness must not be compromised. A ve-hicle’s GHG emissions, such as carbon dioxide, is dependent on its fuel consump-tion. Lowering the vehicle weight, reducing fuel consumption, will therefor reduce emissions. Thus, high performance lightweight materials and structures are on demand. Several methods for achieving high-performance lightweight components are available. One of the most successful approaches has been replacing mild steels with press-hardened steels, e.g. ultra high strength steels (UHSS). In the press-hardening process, a low-alloyed boron steel blank is austenitized followed by simultaneously forming and cooling. By controlling cooling rates, a martensitic microstructure can be obtained, resulting in components with superior properties compared to mild steels. Other methods of achieving lightweight components in-clude the usage of sandwich structures where stiff skins are bonded to a low-density core. In the present thesis, several types of sandwich structures are studied both numerically and experimentally. A UHSS sandwich with a bidirectionlly corru-gated core, intended for stiffness application, is manufactured and evaluated in three-point bending. Finite element models are utilized to recreate the three-point bend test. A large amount of finite elements are required for precise discretization of the core. The number of finite elements are reduced by replacing the sandwich with an homogeneous, equivalent model with input data obtained from analyzing representative volume elements (RVEs) of the core, subjected to periodic and ho-mogeneous boundary conditions. Good agreement is found between experiments and finite element models. A UHSS sandwich with a partly perforated core is evaluated numerically for energy absorption applications. Several hole configu-rations for the core are evaluated with respect to specific energy absorption. A fracture criterion is utilized for the sandwich skins. Computational time is re-duced by homogenization of the core using a stress-resultant based constitutive model. It is found that the sandwich concept allows for an increase in specific energy absorption and that the computational time can be reduced while still be-ing able to predict energy absorption. An experimental methodology is developed for mechanical characterization of micro-sandwich materials. Tools are developed for loading the micro-sandwich in out-of-plane tension and shear, where digital image correlation is used for measuring displacements fields and fracture of the micro-sandwich core. Statistical methods are adopted for analyzing the variation in the mechanical properties of the micro-sandwich from which statistical means may be obtained. The experimental data is used as input for constitutive models, simulating the micro-sandwich material subjected to peeling, using a T-peel test. The numerical models are validated against experiments, found to agree within one standard deviation, suggesting that the experimental methodology produces robust data.The present work has thus presented methods, further increasing the usability of UHSS with regard to lightweighting, and explored how such components may be simulated numerically with adequate accuracy and reasonable computation time. Furthermore, the present thesis contributes by presenting methods for character-izing micro-sandwich materials, including statistical methods for analyzing scatter in mechanical properties, and how such sandwich materials may be modeled, tak-ing elasto-plasticity and damage into account. These results opens up possibilities for further development and optimization of lightweight constructions.

Ort, förlag, år, upplaga, sidor
Luleå: Luleå University of Technology, 2021. s. 50
Serie
Doctoral thesis / Luleå University of Technology 1 jan 1997 → …, ISSN 1402-1544
Nyckelord
Ultra-High Strength Steel, UHSS, Sandwich, Micro-sandwich, Hybrix, Modeling, Composite
Nationell ämneskategori
Teknisk mekanik
Forskningsämne
Hållfasthetslära
Identifikatorer
urn:nbn:se:ltu:diva-85076 (URN)978-91-7790-876-0 (ISBN)978-91-7790-877-7 (ISBN)
Disputation
2021-09-24, E632, 09:00 (Engelska)
Opponent
Handledare
Tillgänglig från: 2021-06-08 Skapad: 2021-06-08 Senast uppdaterad: 2023-09-05Bibliografiskt granskad

Open Access i DiVA

fulltext(8699 kB)360 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 8699 kBChecksumma SHA-512
51ec5c5cd000736aee7fc55cc01e906d972f9ca336899e617b7176a593e6268dc60b5cfb05ec553add4a136ce54e02bcd86896f6f545b2cc0f624cd379887c56
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextScopus

Person

Hammarberg, SamuelKajberg, JörgenLarsson, SimonJonsén, Pär

Sök vidare i DiVA

Av författaren/redaktören
Hammarberg, SamuelKajberg, JörgenLarsson, SimonJonsén, Pär
Av organisationen
Material- och solidmekanik
I samma tidskrift
SN Applied Sciences
Teknisk mekanik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 360 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 136 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf