Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Polymer‐Based Low‐Temperature Thermoelectric Composites
Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.ORCID-id: 0000-0001-8889-4157
Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap. Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, Via Torino 155, Venezia Mestre, 30172 Italy.ORCID-id: 0000-0003-2935-1165
2020 (engelsk)Inngår i: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Vol. 30, nr 52, artikkel-id 2002015Artikkel, forskningsoversikt (Fagfellevurdert) Published
Abstract [en]

Thermoelectric materials allow direct conversion of waste heat energy into electrical energy, thus contributing to solving energy related issues. Polymer‐based materials have been considered for use in heat conversion in the temperature range from 20 to 200 °C, within which conventional materials are not efficient enough, whereas polymers due to their good electronic transport properties, easy processability, non‐toxicity, flexibility, abundance, and simplicity of adjustment, are considered as promising materials. Due to the large variety of available polymers and the almost unlimited combinations of possible modifications, the field of polymer‐based thermoelectrics is very rapidly developing, already reaching efficiency values close to those of inorganic systems. In the current progress report, the most recent advances in the field are discussed. New approaches to improve thermoelectric performance are described, with a focus on revising the mechanisms to improve the thermoelectric properties of the three most investigated polymer matrixes: poly(3,4‐ethylenedioxythiophene) polystyrene sulfonat, poly(3‐hexylthiophene‐2,5‐diyl), and polyaniline, alongside the three main paths of optimizing properties: incorporation of carbon‐based material and inorganic substances, and treatment with chemical agents. The most promising research in the field is highlighted and thoroughly analyzed. The path toward a lab‐to‐fab transition for thermoelectric polymers is suggested in perspective.

sted, utgiver, år, opplag, sider
John Wiley & Sons, 2020. Vol. 30, nr 52, artikkel-id 2002015
Emneord [en]
energy conversion, hybrid composites, polymer thermoelectrics, Seebeck coefficient, waste heat recycling
HSV kategori
Forskningsprogram
Experimentell fysik
Identifikatorer
URN: urn:nbn:se:ltu:diva-80939DOI: 10.1002/adfm.202002015ISI: 000568689600001Scopus ID: 2-s2.0-85090990813OAI: oai:DiVA.org:ltu-80939DiVA, id: diva2:1471023
Merknad

Validerad;2021;Nivå 2;2021-01-08 (alebob)

Tilgjengelig fra: 2020-09-28 Laget: 2020-09-28 Sist oppdatert: 2021-01-08bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Yusupov, KhabibVomiero, Alberto

Søk i DiVA

Av forfatter/redaktør
Yusupov, KhabibVomiero, Alberto
Av organisasjonen
I samme tidsskrift
Advanced Functional Materials

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 19 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf