Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Variable importance assessments of an innovative industrial-scale magnetic separator for processing of iron ore tailings
Mining and Metallurgical Engineering Department, Yazd University, Yazd, Iran. Rahbar Farayand Arya Company (RFACo), Tehran, Iran.
School of Mining Engineering, University of Tehran, Tehran, Iran.
Department of Computer Engineering, Islamic Azad University North Tehran Branch, Tehran, Iran.
Electrical and Electronics Engineering Department, Shahed University, Tehran, Iran.
Vise andre og tillknytning
2020 (engelsk)Inngår i: Mineral Processing and Extractive Metallurgy: Transactions of the Institute of Mining and Metallurgy, ISSN 2572-6641, E-ISSN 2572-665X, Vol. 131, nr 2, s. 122-129Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Reprocessing of iron ore tailings (IOTs) and extracting recoverable valuable iron oxides will become increasingly financially attractive for mining companies and also may reduce environmental problems. Using databases built based on long term monitoring of units installed on plants to control the operational conditions to generate artificial intelligence models can decrease the cost of reprocessing operations Although some investigations have been focused on the reprocessing of IOTs, several challenges still remain which need to be addressed, especially for fine particles. SLon®, has developed a pulsating high gradient magnetic separator for the processing of fine iron oxides. However, there has been no systematic optimisation and variable assessments for SLon® operating variables to examine their effects on metallurgical responses (separation efficiency) on the industrial scale. This study addressed these drawbacks by linear (Pearson correlation) and non-linear (random forest) variable importance measurements (VIM) through an industrial SLon® installation.

sted, utgiver, år, opplag, sider
Taylor & Francis, 2020. Vol. 131, nr 2, s. 122-129
Emneord [en]
Iron ore tailings, random forest, Pearson correlation, reprocessing
HSV kategori
Forskningsprogram
Mineralteknik
Identifikatorer
URN: urn:nbn:se:ltu:diva-80976DOI: 10.1080/25726641.2020.1827674ISI: 000574483400001Scopus ID: 2-s2.0-85091680809OAI: oai:DiVA.org:ltu-80976DiVA, id: diva2:1471640
Merknad

Validerad;2022;Nivå 2;2022-06-29 (sofila)

Tilgjengelig fra: 2020-09-29 Laget: 2020-09-29 Sist oppdatert: 2023-09-05bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Chelgani, Saeed Chehreh

Søk i DiVA

Av forfatter/redaktør
Chelgani, Saeed Chehreh
Av organisasjonen
I samme tidsskrift
Mineral Processing and Extractive Metallurgy: Transactions of the Institute of Mining and Metallurgy

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 25 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf