Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Laser processing of minerals common on asteroids
Luleå tekniska universitet, Institutionen för system- och rymdteknik, Rymdteknik. (Asteroid Engineering)
Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Produkt- och produktionsutveckling.ORCID-id: 0000-0003-4265-1541
Department of Physics, P.O. Box 64, 00014 University of Helsinki, Finland.
Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geovetenskap och miljöteknik.ORCID-id: 0000-0003-4711-7671
Visa övriga samt affilieringar
2021 (Engelska)Ingår i: Optics and Laser Technology, ISSN 0030-3992, E-ISSN 1879-2545, Vol. 135, artikel-id 106724Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Asteroid mining and redirection are two trends that both can utilize lasers, one to drill and cut, the other to ablate and move. Yet little is known about what happens when a laser is used to process the types of materials we typically expect to find on most asteroids. To shed light on laser processing of asteroid material, we used a 300-W, pulsed Ytterbium fiber laser on samples of olivine, pyroxene, and serpentine, and studied the process with a high-speed camera and illumination laser at 10 000 frames per second. We also measure the sizes of the resulting holes using X-ray micro-tomography to find the pulse parameters which remove the largest amount of material using the least amount of energy. We find that at these power densities, all three minerals will melt and chaotically throw off spatter. Short, low-power pulses can efficiently produce thin, deep holes, and long, high-power pulses are more energy efficient at removing the most amount of material.

Ort, förlag, år, upplaga, sidor
Elsevier, 2021. Vol. 135, artikel-id 106724
Nyckelord [en]
Laser drilling, High-speed imaging, X-ray micro-tomography, Asteroid mining
Nationell ämneskategori
Annan elektroteknik och elektronik Bearbetnings-, yt- och fogningsteknik Geologi
Forskningsämne
Rymdtekniska system; Produktionsutveckling; Malmgeologi
Identifikatorer
URN: urn:nbn:se:ltu:diva-81626DOI: 10.1016/j.optlastec.2020.106724ISI: 000597284000002Scopus ID: 2-s2.0-85096507289OAI: oai:DiVA.org:ltu-81626DiVA, id: diva2:1503749
Forskningsfinansiär
Wallenbergstiftelserna, KAW 2016.0346Kempestiftelserna, JCK-1802
Anmärkning

Validerad;2020;Nivå 2;2020-12-03 (johcin)

Tillgänglig från: 2020-11-25 Skapad: 2020-11-25 Senast uppdaterad: 2021-02-26Bibliografiskt granskad
Ingår i avhandling
1. Laser Interaction with Minerals Common on Asteroids
Öppna denna publikation i ny flik eller fönster >>Laser Interaction with Minerals Common on Asteroids
2021 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Asteroids are worth studying for three reasons: planetary protection, industrial applications, and scientific knowledge. It is critical we develop technologies capable of diverting objects on collision courses with our planet. We can use the same technology to move or process asteroids and comets for materials to build structures or refuel in Low-Earth Orbit. Asteroids are also windows into the past; they were formed in the early Solar System, and could potentially have been the source of water and/or life on Earth. There are unique challenges to manipulating an asteroid or asteroid materials, which means that much of what we know about material processing needs to be revamped to fit the situation. One of the motivating drives of this research was that a laser would be an excellent tool to perform many tasks at an asteroid.

One process of interest is laser drilling. The surface composition of asteroids is altered by aeons of space weathering; by studying the subsurface composition we can ascertain just how much it is altered and possibly by which processes. It is possible that hydrated minerals or ices exist below the surface as well, which are of great economic interest in asteroid mining. One of the greatest challenges to get under the surface of an asteroid is the low gravity: any forces or torques generated by a sampling mechanism may tip the spacecraft or launch it into deep space. A laser does not generate any significant forces, and can even be used without having to land; lasers do use a lot of electric power so the laser parameters need to be optimized to minimize the size and power requirements of the spacecraft. We found that nearly 1-cm deep holes can be made with as little as 18~J of energy using a 300-W laser.

Laser ablation has been studied as a mechanism to redirect asteroids, but it is not particularly energy efficient at material removal. If the idea is to create a momentum exchange by removing surface material beyond an object's gravitational pull, then there could perhaps be more energy efficient mechanisms. One mechanism we investigated was spallation, where the shock wave of a laser pulse breaks off a relatively large chunk of material without having to melt and vaporize it. We found that spallation may be many times more energy efficient than ablation.

Laser welding of metals has been of industrial interest for decades, though the welding of two different materials is still a challenge. We sought to develop a laser-based wire-attachment mechanism that can be used to anchor spacecraft to the surface of a small body or to maneuver boulders or small asteroids. When attempting to follow a traditional welding process, it was found that the two melt pools would not mix, and if it did, it was very weak. Instead, we used the laser to drill a hole and melt a wire while inserting it into the hole. This produced a solid anchor with a hold strength of up to 120~N.

Ort, förlag, år, upplaga, sidor
Luleå: Luleå University of Technology, 2021
Serie
Doctoral thesis / Luleå University of Technology 1 jan 1997 → …, ISSN 1402-1544
Nationell ämneskategori
Annan elektroteknik och elektronik
Forskningsämne
Rymdtekniska system
Identifikatorer
urn:nbn:se:ltu:diva-83092 (URN)978-91-7790-767-1 (ISBN)978-91-7790-768-8 (ISBN)
Disputation
2021-04-23, Kiruna Spacecampus - D1, 14:00 (Engelska)
Opponent
Handledare
Forskningsfinansiär
Knut och Alice Wallenbergs Stiftelse, KAW 2016.0346
Tillgänglig från: 2021-02-26 Skapad: 2021-02-26 Senast uppdaterad: 2021-04-02Bibliografiskt granskad

Open Access i DiVA

fulltext(17526 kB)365 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 17526 kBChecksumma SHA-512
6c06f0543de5dd5f11f1c3bf739b1bdc040254d318216b596d14a1719362007c4712263eaedcaf4bc9834eb97b03897951923dc30f66de99cd8622b0736a1c96
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextScopus

Person

Anthony, NiklasFrostevarg, JanWanhainen, ChristinaGranvik, Mikael

Sök vidare i DiVA

Av författaren/redaktören
Anthony, NiklasFrostevarg, JanWanhainen, ChristinaGranvik, Mikael
Av organisationen
RymdteknikProdukt- och produktionsutvecklingGeovetenskap och miljöteknik
I samma tidskrift
Optics and Laser Technology
Annan elektroteknik och elektronikBearbetnings-, yt- och fogningsteknikGeologi

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 365 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 412 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf