Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Calibration of orthotropic plasticity- and damage models for micro-sandwich materials
Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Hållfasthetslära.ORCID-id: 0000-0001-7895-1058
Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Hållfasthetslära.ORCID-id: 0000-0001-5218-396x
Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Hållfasthetslära.ORCID-id: 0000-0001-5206-6894
Lamera AB, Odhners gata 17, 42130 Västra Frölunda, Sweden.
Visa övriga samt affilieringar
2022 (Engelska)Ingår i: SN Applied Sciences, ISSN 2523-3963, E-ISSN 2523-3971, Vol. 4, nr 6, artikel-id 182Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Sandwich structures are commonly used to increase bending-stiffness without significantly increasing weight. In particular, micro-sandwich materials have been developed with the automotive industry in mind, being thin and formable. In the present work, it is investigated if micro-sandwich materials may be modeled using commercially available material models, accounting for both elasto-plasticity and fracture. A methodology for calibration of both the constitutive- and the damage model of micro-sandwich materials is presented. To validate the models, an experimental T-peel test is performed on the micro-sandwich material and compared with the numerical models. The models are found to be in agreement with the experimental data, being able to recreate the force response as well as the fracture of the micro-sandwich core.

Ort, förlag, år, upplaga, sidor
Springer Nature, 2022. Vol. 4, nr 6, artikel-id 182
Nyckelord [en]
Micro sandwich, Hybrix, Lightweight, Modeling, T-peel test
Nationell ämneskategori
Kompositmaterial och -teknik
Forskningsämne
Hållfasthetslära
Identifikatorer
URN: urn:nbn:se:ltu:diva-85075DOI: 10.1007/s42452-022-05060-6ISI: 000798485800004Scopus ID: 2-s2.0-85130368530OAI: oai:DiVA.org:ltu-85075DiVA, id: diva2:1562019
Forskningsfinansiär
EU, Horisont 2020, 814517 Form-Planet
Anmärkning

Validerad;2022;Nivå 2;2022-06-03 (hanlid)

Tillgänglig från: 2021-06-08 Skapad: 2021-06-08 Senast uppdaterad: 2023-09-05Bibliografiskt granskad
Ingår i avhandling
1. A Study on Sandwich Structures: Development, Mechanical Characterization and Numerical Modeling
Öppna denna publikation i ny flik eller fönster >>A Study on Sandwich Structures: Development, Mechanical Characterization and Numerical Modeling
2021 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Legislative demands force the automotive industry to reduce greenhouse gas (GHG) emissions. At the same time, crashworthiness must not be compromised. A ve-hicle’s GHG emissions, such as carbon dioxide, is dependent on its fuel consump-tion. Lowering the vehicle weight, reducing fuel consumption, will therefor reduce emissions. Thus, high performance lightweight materials and structures are on demand. Several methods for achieving high-performance lightweight components are available. One of the most successful approaches has been replacing mild steels with press-hardened steels, e.g. ultra high strength steels (UHSS). In the press-hardening process, a low-alloyed boron steel blank is austenitized followed by simultaneously forming and cooling. By controlling cooling rates, a martensitic microstructure can be obtained, resulting in components with superior properties compared to mild steels. Other methods of achieving lightweight components in-clude the usage of sandwich structures where stiff skins are bonded to a low-density core. In the present thesis, several types of sandwich structures are studied both numerically and experimentally. A UHSS sandwich with a bidirectionlly corru-gated core, intended for stiffness application, is manufactured and evaluated in three-point bending. Finite element models are utilized to recreate the three-point bend test. A large amount of finite elements are required for precise discretization of the core. The number of finite elements are reduced by replacing the sandwich with an homogeneous, equivalent model with input data obtained from analyzing representative volume elements (RVEs) of the core, subjected to periodic and ho-mogeneous boundary conditions. Good agreement is found between experiments and finite element models. A UHSS sandwich with a partly perforated core is evaluated numerically for energy absorption applications. Several hole configu-rations for the core are evaluated with respect to specific energy absorption. A fracture criterion is utilized for the sandwich skins. Computational time is re-duced by homogenization of the core using a stress-resultant based constitutive model. It is found that the sandwich concept allows for an increase in specific energy absorption and that the computational time can be reduced while still be-ing able to predict energy absorption. An experimental methodology is developed for mechanical characterization of micro-sandwich materials. Tools are developed for loading the micro-sandwich in out-of-plane tension and shear, where digital image correlation is used for measuring displacements fields and fracture of the micro-sandwich core. Statistical methods are adopted for analyzing the variation in the mechanical properties of the micro-sandwich from which statistical means may be obtained. The experimental data is used as input for constitutive models, simulating the micro-sandwich material subjected to peeling, using a T-peel test. The numerical models are validated against experiments, found to agree within one standard deviation, suggesting that the experimental methodology produces robust data.The present work has thus presented methods, further increasing the usability of UHSS with regard to lightweighting, and explored how such components may be simulated numerically with adequate accuracy and reasonable computation time. Furthermore, the present thesis contributes by presenting methods for character-izing micro-sandwich materials, including statistical methods for analyzing scatter in mechanical properties, and how such sandwich materials may be modeled, tak-ing elasto-plasticity and damage into account. These results opens up possibilities for further development and optimization of lightweight constructions.

Ort, förlag, år, upplaga, sidor
Luleå: Luleå University of Technology, 2021. s. 50
Serie
Doctoral thesis / Luleå University of Technology 1 jan 1997 → …, ISSN 1402-1544
Nyckelord
Ultra-High Strength Steel, UHSS, Sandwich, Micro-sandwich, Hybrix, Modeling, Composite
Nationell ämneskategori
Teknisk mekanik
Forskningsämne
Hållfasthetslära
Identifikatorer
urn:nbn:se:ltu:diva-85076 (URN)978-91-7790-876-0 (ISBN)978-91-7790-877-7 (ISBN)
Disputation
2021-09-24, E632, 09:00 (Engelska)
Opponent
Handledare
Tillgänglig från: 2021-06-08 Skapad: 2021-06-08 Senast uppdaterad: 2023-09-05Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Hammarberg, SamuelKajberg, JörgenLarsson, SimonJonsén, Pär

Sök vidare i DiVA

Av författaren/redaktören
Hammarberg, SamuelKajberg, JörgenLarsson, SimonJonsén, Pär
Av organisationen
Hållfasthetslära
I samma tidskrift
SN Applied Sciences
Kompositmaterial och -teknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 125 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf