Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Using Cloud-Based Array Electromagnetics on the Path to Zero Carbon Footprint during the Energy Transition
KMS Technologies, Houston, TX 77057, USA.
KMS Technologies, Houston, TX 77057, USA.
Red Tree Consulting, Houston, TX 77055, USA.
Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geovetenskap och miljöteknik. KMS Technologies, Houston, TX 77057, USA.ORCID-id: 0000-0002-5600-5375
Visa övriga samt affilieringar
2021 (Engelska)Ingår i: Journal of Marine Science and Engineering, E-ISSN 2077-1312, Vol. 9, nr 8, artikel-id 906Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Fluid imaging is one of the key geophysical technologies for the energy industry during energy transition to zero footprint. We propose better Cloud-based fluid distribution imaging to allow better, more optimized production, thus reducing carbon dioxide (CO2) footprint per barrel produced. For CO2 storage, the location knowledge of the stored fluids is mandatory. Electromagnetics is the preferred way to image reservoir fluids due to its strong coupling to the fluid resistivity. Unfortunately, acquiring and interpreting the data takes too long to contribute significantly to cost optimization of field operations. Using artificial intelligence and Cloud based data acquisition we can reduce the operational feedback to near real time and even, for the interpretation, to close to 24 h. This then opens new doors for the breakthrough of this technology from exploration to production and monitoring. It allows the application envelope to be enlarged to much noisier environments where real time acquisition can be optimized based on the acquired data. Once all components are commercialized, the full implementation could become a real game changer by providing near real time 3-dimensional subsurface images in support of the energy transition.

Ort, förlag, år, upplaga, sidor
MDPI, 2021. Vol. 9, nr 8, artikel-id 906
Nyckelord [en]
controlled source electromagnetics, CSEM, artificial intelligence, energy transition using electromagnetics, reservoir monitoring, CCUS, carbon capture utilization and storage, fluid imaging
Nationell ämneskategori
Geofysik Energiteknik
Forskningsämne
Prospekteringsgeofysik
Identifikatorer
URN: urn:nbn:se:ltu:diva-86985DOI: 10.3390/jmse9080906ISI: 000690528200001Scopus ID: 2-s2.0-85113993410OAI: oai:DiVA.org:ltu-86985DiVA, id: diva2:1591219
Anmärkning

Validerad;2021;Nivå 2;2021-09-06 (alebob)

Tillgänglig från: 2021-09-06 Skapad: 2021-09-06 Senast uppdaterad: 2021-09-13Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Smirnov, Maxim

Sök vidare i DiVA

Av författaren/redaktören
Smirnov, Maxim
Av organisationen
Geovetenskap och miljöteknik
I samma tidskrift
Journal of Marine Science and Engineering
GeofysikEnergiteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 19 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf