Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Temperature distribution inside metal droplets influenced by tailored laser beam pulse
Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Produkt- och produktionsutveckling.ORCID-id: 0000-0002-3060-5831
Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Produkt- och produktionsutveckling.ORCID-id: 0000-0003-4265-1541
Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Produkt- och produktionsutveckling.ORCID-id: 0000-0003-0194-9018
(Engelska)Manuskript (preprint) (Övrigt vetenskapligt)
Nationell ämneskategori
Bearbetnings-, yt- och fogningsteknik Metallurgi och metalliska material
Identifikatorer
URN: urn:nbn:se:ltu:diva-89433OAI: oai:DiVA.org:ltu-89433DiVA, id: diva2:1641706
Tillgänglig från: 2022-03-03 Skapad: 2022-03-03 Senast uppdaterad: 2022-03-03
Ingår i avhandling
1. Laser-induced phase transformations in microalloyed steels
Öppna denna publikation i ny flik eller fönster >>Laser-induced phase transformations in microalloyed steels
2022 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

The application of thermal cycles below melting temperature can induce solid-to-solid phase transformation in steels, which is the transition between different crystalline structures of the same compound. There are many types of crystalline structures in steels produced, depending on the characteristics of the applied thermal cycle. For instance, rapid cooling can generate martensite structure that tends to increase the hardness of the steels, while slow cooling will more likely produce ferrite structure, which is less hard than the martensite structure. Laser heat treatment is one example where the laser becomes a thermal energy source, inducing thermal cycles below melting point and an extremely rapid cooling rate, which results in unexpected microstructures upon cooling. The mechanism of such phase transformations is still widely unknown, although the knowledge can be beneficial for many laser processes. Accordingly, studies on laser induced phase transformation are necessary.

The purpose of my work is explaining underlying mechanisms of solid-to-solid phase transformation in microalloyed steels due to short thermal cycles of the laser heat treatment. My work aims to (1) find the correlation between energy input distributions from the laser beam and temperature history during the laser heat treatment process and (2) describe how changes in the thermal cycle induced by laser illumination influence the phase transformation dynamics. This work focuses on martensitic transformation and infrared laser (1070 nm).

To explain martensitic transformation during laser heat treatment, this work involved ex-situ observations of the laser heat treated specimens. The study consists of varying the laser parameters, measuring the surface temperature of the specimens and simulating the in-depth temperature. Consecutively, characteristics (i.e., holding time, peak temperature, and cooling rate) of the measured and/or calculated thermal cycles were extracted, and the microstructures of the specimens were observed using microscopes. Finally, the thermal cycle characteristics and the microstructure of the specimens were related.

The results show that the energy input distributions from the laser beam (e.g., laser beam profile) determine the geometry of the treated area, while processing speed and laser power influence the cooling rate and peak temperature of the thermal cycle respectively. The short thermal cycles induced by the laser beam are able to induce martensitic structure in the specimen. However, ferrite structure unexpectedly remains in the treated area. The holding time, which is the duration of temperature staying above austenisation temperature, has an inverse correlation to the appearance of ferrite structure in the treated area. This relates to the carbon diffusion occurring during the process, in which the carbon atoms have to diffuse from rich-carbon-austenite into low-carbon-austenite before cooling. Accordingly, the amount of martensite structure in the treated area depends on the holding time value of the process. There are indications that the rapid cooling induced by the laser beam can abruptly stop the diffusion process. It is clear that the laser provides an opportunity to control martensite structure.

Ort, förlag, år, upplaga, sidor
Luleå University of Technology, 2022
Serie
Doctoral thesis / Luleå University of Technology 1 jan 1997 → …, ISSN 1402-1544
Nationell ämneskategori
Bearbetnings-, yt- och fogningsteknik Metallurgi och metalliska material
Forskningsämne
Produktionsutveckling
Identifikatorer
urn:nbn:se:ltu:diva-89434 (URN)978-91-8048-037-6 (ISBN)978-91-8048-038-3 (ISBN)
Disputation
2022-05-25, E231, Luleå tekniska universitet, Luleå, 09:00 (Engelska)
Opponent
Handledare
Forskningsfinansiär
Vinnova
Tillgänglig från: 2022-03-03 Skapad: 2022-03-03 Senast uppdaterad: 2022-05-05Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Person

Dewi, Handika SandraFrostevarg, JanVolpp, Joerg

Sök vidare i DiVA

Av författaren/redaktören
Dewi, Handika SandraFrostevarg, JanVolpp, Joerg
Av organisationen
Produkt- och produktionsutveckling
Bearbetnings-, yt- och fogningsteknikMetallurgi och metalliska material

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 81 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf