Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Laser-assisted reduction of iron ore using aluminum powder
Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Produkt- och produktionsutveckling.ORCID-id: 0000-0003-4443-3097
Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Produkt- och produktionsutveckling. Fraunhofer IWS, Winterbergstrasse 28, 01277 Dresden, Germany.
Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Produkt- och produktionsutveckling.ORCID-id: 0000-0002-3569-6795
Fraunhofer IWS, Winterbergstrasse 28, 01277 Dresden, Germany.ORCID-id: 0000-0002-6023-4461
2023 (Engelska)Ingår i: Journal of laser applications, ISSN 1042-346X, E-ISSN 1938-1387, Vol. 35, nr 2, artikel-id 022007Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

This study reports on the laser-assisted reduction of iron ore waste using Al powder as areducing agent. Due to climate change and the global warming situation, it has become ofparamount importance to search for and/or develop green and sustainable processes for ironand steel production. In this regard, a new method for iron ore utilization is proposed in thiswork, investigating the possibility of iron ore waste reduction via metallothermic reaction withAl powder. Laser processing of iron ore fines was performed, focusing on the Fe2O3-Alinteraction behavior and extent of the iron ore reduction. The reaction between the materialsproceeded in a rather intense uncontrolled manner which led to a formation of Fe-rich domainsand alumina as two separate phases. In addition, a combination of Al2O3 and Fe2O3 melts aswell as transitional areas such as intermetallics were observed, suggesting the occurrence ofincomplete reduction reaction in isolated regions. The reduced iron droplets were prone toacquire a sphere-like shape and concentrated mainly near the surface of the Al2O3 melt or at theinterface with the iron oxide. Both SEM, EDS and WDS analyses were employed to analyzechemical composition, microstructure and morphological appearances of the reaction products.High-speed imaging was used to study the process phenomena and observe differences in themovement behavior of the particles. Furthermore, the measurements acquired from X-raycomputed microtomography revealed that approximately 2.4 % of iron was reduced during thelaser processing of Fe2O3-Al powder bed, most likely due to insufficient reaction time orinappropriate equivalence ratio of the two components.

Ort, förlag, år, upplaga, sidor
American Institute of Physics (AIP), 2023. Vol. 35, nr 2, artikel-id 022007
Nyckelord [en]
iron ore, aluminum, reduction, sustainability, laser powder bed fusion, additive manufacturing
Nationell ämneskategori
Metallurgi och metalliska material Bearbetnings-, yt- och fogningsteknik
Forskningsämne
Produktionsutveckling
Identifikatorer
URN: urn:nbn:se:ltu:diva-95787DOI: 10.2351/7.0000856ISI: 000952257600002Scopus ID: 2-s2.0-85150388187OAI: oai:DiVA.org:ltu-95787DiVA, id: diva2:1740998
Forskningsfinansiär
Energimyndigheten, 51021-1, P2022-00202
Anmärkning

Validerad;2023;Nivå 2;2023-04-12 (hanlid);

Tillgänglig från: 2023-03-02 Skapad: 2023-03-02 Senast uppdaterad: 2024-03-07Bibliografiskt granskad
Ingår i avhandling
1. Towards sustainability in additive manufacturing: material and process aspects
Öppna denna publikation i ny flik eller fönster >>Towards sustainability in additive manufacturing: material and process aspects
2023 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Alternativ titel[sv]
Mot hållbarhet i additiv tillverkning: material- och processaspekter
Abstract [en]

The acceptance of additive manufacturing (AM) depends on the quality of final parts and process repeatability. Recently, many studies have been dedicated to the establishment of the relationship between the process behavior and material performance. Phenomena such as laser-material interaction, melt pool dynamics, ejecta formation and particle movement behavior on a powder bed are of a particular interest for the AM community as these events directly influence the outcome of the process. Another aspect, which hinders the adoption of AM, is the need for cost-efficient powder materials, their sustainable processing and recycling. 

The research work presented in this thesis explores scientific aspects related to the above-mentioned topics, with a particular focus on the material and process behavior phenomena in powder bed fusion-laser melting (PBF-LM) and directed energy deposition (DED) processes. 

Paper A shows a comparative study of dissimilarly shaped gas and water atomized low alloy steel powders regarding their processability, packing capacities, particle movement behavior and powder performance in PBF-LM. The impact of chemical composition and morphology of the powders on the process behavior was revealed. Powder spattering and melt pool instabilities were discussed in detail. 

Paper B contains research on the particle movement and denudation behavior on a powder bed when using near-spherical and non-spherical steel powders. The influence of particle morphology on the dynamics of arbitrary-shaped powder particles was studied by applying an analytical correlation formula to calculate the drag force exerted on powder particles of various shape. Particle entrainment of gas and water atomized powders in front of the laser beam was measured, revealing a significant difference in the powder transfer towards the melt pool.

Paper C explains the role of ejecta in the recycled powder and the changing behavior of the material due to ejecta pick-up. The impact of multiple powder recycling steps on the degradation of low alloy steel powder in laser powder bed fusion was studied. Oxygen content, particle size and ejecta occurrence gradually increased after each recycling step and were identified as the main contributors to the property alterations observed in the powder during recycling. In addition, a direct correlation between the increase in oxygen and more frequent spatter ejection with repeated recycling was established. 

Paper D focuses on the impact of powder aging on the degradation of AlSi10Mg powder during processing in PBF-LM. The analysis of the powder properties, affected by laser exposure and the aging procedure, showed a change of chemical and morphological characteristics of the powders in virgin and aged conditions. The oxygen content in the powders appeared to have a significant effect on the powders' surface appearance and light absorbance, gradually deteriorating the processability of the powders with the increase of oxygen level. Porosity occurrence and its influence on the mechanical properties of the powders was also studied, demonstrating a rapid decrease of ultimate tensile strength and elongation from virgin condition to aged.

Papers E and F investigate the possibilities of iron ore waste reduction using Al powder as a reducing agent and a laser beam as a heat source. Paper E focuses on the Fe2O3-Al interaction behavior and extent of the iron ore reduction, whereas Paper F reports on the high-speed imaging investigation possibilities of laser beam-material surface interaction when processing Fe2O3-Al powders and an Fe2O3 powder-AlSI5 wire combination in DED. In-situ observation of various melt pool phenomena and exothermic reaction behavior of the material combinations using high-speed imaging was carried out. In addition to that, the influence of feed materials and laser power on the thermite reaction time was discussed in detail, showing their dissimilar behavior.

All six papers include research on laser additive manufacturing using powder feedstocks. The papers discuss various phenomena regarding powder processability, recycling and laser beam-material interaction behavior in both PBF-LM and DED. High-speed imaging was used as the main tool to observe and study the above listed topics.  

Ort, förlag, år, upplaga, sidor
Luleå: Luleå University of Technology, 2023
Serie
Doctoral thesis / Luleå University of Technology 1 jan 1997 → …, ISSN 1402-1544
Nationell ämneskategori
Bearbetnings-, yt- och fogningsteknik Metallurgi och metalliska material
Forskningsämne
Produktionsutveckling
Identifikatorer
urn:nbn:se:ltu:diva-95789 (URN)978-91-8048-278-3 (ISBN)978-91-8048-279-0 (ISBN)
Disputation
2023-04-27, E632, Luleå tekniska universitet, Luleå, 09:00 (Engelska)
Opponent
Handledare
Tillgänglig från: 2023-03-02 Skapad: 2023-03-02 Senast uppdaterad: 2023-04-06Bibliografiskt granskad

Open Access i DiVA

fulltext(5620 kB)263 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 5620 kBChecksumma SHA-512
12ede1230de48ce98717bb41554163376582f1c26ecb7dc7c960fda4ca6852a93e282ee545e8929034defcb6d4c974d66a8ba415d4c0194e61b2b37d438a180b
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextScopus

Person

Fedina, TatianaBrueckner, FrankKaplan, Alexander F. H.

Sök vidare i DiVA

Av författaren/redaktören
Fedina, TatianaBrueckner, FrankKaplan, Alexander F. H.Wilsnack, Christoph
Av organisationen
Produkt- och produktionsutveckling
I samma tidskrift
Journal of laser applications
Metallurgi och metalliska materialBearbetnings-, yt- och fogningsteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 265 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 260 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf