Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Machine learning in concrete technology: A review of current researches, trends, and applications
Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.ORCID-id: 0000-0002-0036-8417
2023 (engelsk)Inngår i: Frontiers in Built Environment, E-ISSN 2297-3362, Frontiers in Built Environment, E-ISSN 2297-3362, Vol. 9, artikkel-id 1145591Artikkel, forskningsoversikt (Fagfellevurdert) Published
Abstract [en]

Machine learning techniques have been used in different fields of concrete technology to characterize the materials based on image processing techniques, develop the concrete mix design based on historical data, and predict the behavior of fresh concrete, hardening, and hardened concrete properties based on laboratory data. The methods have been extended further to evaluate the durability and predict or detect the cracks in the service life of concrete, It has even been applied to predict erosion and chemical attaches. This article offers a review of current applications and trends of machine learning techniques and applications in concrete technology. The findings showed that machine learning techniques can predict the output based on historical data and are deemed to be acceptable to evaluate, model, and predict the concrete properties from its fresh state, to its hardening and hardened state to service life. The findings suggested more applications of machine learning can be extended by utilizing the historical data acquitted from scientific laboratory experiments and the data acquitted from the industry to provide a comprehensive platform to predict and evaluate concrete properties. It was found modeling with machine learning saves time and cost in obtaining concrete properties while offering acceptable accuracy.

sted, utgiver, år, opplag, sider
Frontiers Media S.A. , 2023. Vol. 9, artikkel-id 1145591
Emneord [en]
concrete, crack detection, data, machine learning, mix optimization, performance
HSV kategori
Forskningsprogram
Byggmaterial
Identifikatorer
URN: urn:nbn:se:ltu:diva-96270DOI: 10.3389/fbuil.2023.1145591ISI: 000948646100001Scopus ID: 2-s2.0-85150064166OAI: oai:DiVA.org:ltu-96270DiVA, id: diva2:1747707
Merknad

Validerad;2023;Nivå 2;2023-03-30 (hanlid)

Tilgjengelig fra: 2023-03-30 Laget: 2023-03-30 Sist oppdatert: 2023-03-30bibliografisk kontrollert

Open Access i DiVA

fulltext(4108 kB)1317 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 4108 kBChecksum SHA-512
595a47bcff7a344d746830e2375874b0f86690d1255cc2b5c0e5efab09bf4c0bae4f7928a69ce6466b62b623606b7df59271a953d7c3d21bacd99b87dddf60cb
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstScopus

Person

Gamil, Yaser

Søk i DiVA

Av forfatter/redaktør
Gamil, Yaser
Av organisasjonen
I samme tidsskrift
Frontiers in Built Environment

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 1318 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 351 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf