Open this publication in new window or tab >>2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]
Industry 4.0 is transforming traditional production systems into dynamic and adaptive value networks. However, this shift reveals significant challenges in achieving seamless interoperability, workflow optimization, and effective value chain analysis within complex production environments. This thesis contributes to addressing these challenges through a structured approach, supporting data-driven and adaptive decision-making to optimize operations in dynamic production value networks.
The research commences by architecting microservice-oriented systems that facilitate the integration of legacy and brownfield technologies with Industry 4.0-compliant environments. By leveraging the Eclipse Arrowhead framework, the thesis demonstrates how diverse systems can exchange data and collaborate at runtime, establishing the foundation for cohesive and interoperable production networks.
Building on this interoperable structure, the thesis explores AI-driven optimizations across key areas, including workflow optimization, predictive maintenance, and demand response. These approaches support operational efficiency and adaptability in production value networks. Case studies showcase collaborative learning models for condition monitoring and an edge-based framework to optimize energy use, demonstrating tangible improvements in efficiency and resilience.
Finally, a significant contribution of this thesis is the introduction of tools for visualization and analysis of value chains. Using the Reference Architectural Model for Industry 4.0 (RAMI 4.0), the research provides methods to map and evaluate value creation within dynamic production networks. By integrating activity-based costing with microservice architectures, it offers granular insights into cost and value dynamics at runtime, enabling agile and informed decision-making in complex industrial environments.
Through these contributions, the thesis advances the understanding and implementation of data-driven optimizations in production value networks, supporting agility and sustainability while contributing to the transition to circular business models by enabling value chain analysis across the product lifecycle. The thesis serves as a bridge between theoretical frameworks and practical applications, providing valuable insights for both academia and industry, and paving the way for more efficient and sustainable production ecosystems.
Place, publisher, year, edition, pages
Luleå tekniska universitet, 2025
Keywords
Industry 4.0, Smart Industry Ecosystems, Microservice Architecture, Lifecycle Management, Run-time Value Chain Analysis, Real-time Decision Making, Production Value Networks, Stakeholder Collaboration
National Category
Engineering and Technology
Research subject
Cyber-Physical Systems
Identifiers
urn:nbn:se:ltu:diva-111004 (URN)978-91-8048-716-0 (ISBN)978-91-8048-717-7 (ISBN)
Public defence
2025-02-26, A117, Luleå University of Technology, Luleå, 09:00 (English)
Opponent
Supervisors
Projects
Arrowhead fPVNAI REDGIO 5.0
Funder
European Commission
2024-12-092024-12-092025-01-30Bibliographically approved