Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Enhancing photovoltaic module fault diagnosis: Leveraging unmanned aerial vehicles and autoencoders in machine learning
School of Mechanical Engineering (SMEC), Vellore Institute of Technology, Chennai, India.
Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Drift, underhåll och akustik.ORCID-id: 0000-0002-4034-8859
School of Mechanical Engineering (SMEC), Vellore Institute of Technology, Chennai, India.
Department of Ocean Operations and Civil Engineering, Norwegian University of Science and Technology (NTNU), 6009 Ålesund, Norway; Department of Sustainable Systems Engineering (INATECH), University of Freiburg, 79110 Freiburg, Germany.ORCID-id: 0000-0001-5735-3825
2024 (Engelska)Ingår i: Sustainable Energy Technologies and Assessments, ISSN 2213-1388, E-ISSN 2213-1396, Vol. 64, artikel-id 103674Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Photovoltaic (PV) modules play a pivotal role in renewable energy systems, underscoring the critical need for their fault diagnosis to ensure sustained energy production. This study introduces a novel approach that combines the power of deep neural networks and machine learning for comprehensive PV module fault diagnosis. Specifically, a fusion methodology that incorporates autoencoders (a deep neural network architecture) and support vector machines (SVM) (a machine learning algorithm) is proposed in the present study. To generate high-quality image datasets for training, unmanned aerial vehicles (UAVs) equipped with RGB cameras were employed to capture detailed images of PV modules. Burn marks, snail trails, discoloration, delamination, glass breakage and good panel were the conditions considered in the study. The experimental results demonstrate remarkable accuracy of 98.57% in diagnosing faults, marking a significant advancement in enhancing the reliability and performance of PV modules. This research contributes to the sustainability and efficiency of renewable energy systems, underlining its importance in the quest for a cleaner, greener future.

Ort, förlag, år, upplaga, sidor
Elsevier, 2024. Vol. 64, artikel-id 103674
Nyckelord [en]
Photovoltaic modules, Support vector machines, Autoencoders, Unmanned aerial vehicles
Nationell ämneskategori
Maskinteknik Naturresursteknik
Forskningsämne
Drift och underhållsteknik
Identifikatorer
URN: urn:nbn:se:ltu:diva-104296DOI: 10.1016/j.seta.2024.103674Scopus ID: 2-s2.0-85185409765OAI: oai:DiVA.org:ltu-104296DiVA, id: diva2:1838659
Anmärkning

Validerad;2024;Nivå 2;2024-04-04 (joosat);

Full text license: CC BY-NC-ND

Tillgänglig från: 2024-02-18 Skapad: 2024-02-18 Senast uppdaterad: 2024-04-04Bibliografiskt granskad

Open Access i DiVA

fulltext(830 kB)45 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 830 kBChecksumma SHA-512
bee2c33f5677c411fda2d5765fe21b25c25f44a83c2089b26aa28fca1a53bb9669c768ee49479c4e5cc15993c2a74c78d615dadc36b257f1d399468e2fc6046b
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextScopus

Person

Venkatesh, Naveen

Sök vidare i DiVA

Av författaren/redaktören
Venkatesh, NaveenAghaei, Mohammadreza
Av organisationen
Drift, underhåll och akustik
I samma tidskrift
Sustainable Energy Technologies and Assessments
MaskinteknikNaturresursteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 45 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 76 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf