Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
IMAML-IDCG: Optimization-based meta-learning with ImageNet feature reusing for few-shot invasive ductal carcinoma grading
Department of Mechatronics and Biomedical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Sungai Long, Malaysia.ORCID iD: 0000-0003-0568-7406
Department of Mechatronics and Biomedical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Sungai Long, Malaysia.ORCID iD: 0000-0002-9657-8311
Department of Mechatronics and Biomedical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Sungai Long, Malaysia.ORCID iD: 0000-0002-0263-6358
Department of Electrical and Electronic Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Sungai Long, Malaysia.ORCID iD: 0000-0002-0007-6174
Show others and affiliations
2024 (English)In: Expert systems with applications, ISSN 0957-4174, E-ISSN 1873-6793, Vol. 257, article id 124969Article in journal (Refereed) Published
Place, publisher, year, edition, pages
Elsevier, 2024. Vol. 257, article id 124969
National Category
Computer Sciences Computer Vision and Robotics (Autonomous Systems)
Research subject
Machine Learning
Identifiers
URN: urn:nbn:se:ltu:diva-108468DOI: 10.1016/j.eswa.2024.124969ISI: 001295417200001Scopus ID: 2-s2.0-85200987898OAI: oai:DiVA.org:ltu-108468DiVA, id: diva2:1887010
Note

Validerad;2024;Nivå 2;2024-08-15 (signyg);

Funder: Universiti Tunku Abdul Rahman Research Fund (Reference: IPSR/RMC/UTARRF/2022-C1/H01)

Available from: 2024-08-06 Created: 2024-08-06 Last updated: 2024-11-20Bibliographically approved

Open Access in DiVA

fulltext(15869 kB)95 downloads
File information
File name FULLTEXT01.pdfFile size 15869 kBChecksum SHA-512
802dbf831007cc6ead805dcf7fa3a7c07895db5d4a8390afc7f8c60d45d79041e07cb6941bf6f5c0325518175dc832df2c55c6b93594535359edca784ebd7aa4
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Authority records

Mokayed, Hamam

Search in DiVA

By author/editor
Voon, WingatesChai Hum, YanKai Tee, YeeYap, Wun-SheWee Lai, KhinNisar, HumairaMokayed, Hamam
By organisation
Embedded Internet Systems Lab
In the same journal
Expert systems with applications
Computer SciencesComputer Vision and Robotics (Autonomous Systems)

Search outside of DiVA

GoogleGoogle Scholar
Total: 95 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 95 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf