Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Support vector machine for classification of voltage disturbances
University College of Borås.
Chalmers University of Technology.
Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.ORCID-id: 0000-0003-4074-9529
2007 (engelsk)Inngår i: IEEE Transactions on Power Delivery, ISSN 0885-8977, E-ISSN 1937-4208, Vol. 22, nr 3, s. 1297-1303Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

The support vector machine (SVM) is a powerful method for statistical classification of data used in a number of different applications. However, the usefulness of the method in a commercial available system is very much dependent on whether the SVM classifier can be pretrained from a factory since it is not realistic that the SVM classifier must be trained by the customers themselves before it can be used. This paper proposes a novel SVM classification system for voltage disturbances. The performance of the proposed SVM classifier is investigated when the voltage disturbance data used for training and testing originated from different sources. The data used in the experiments were obtained from both real disturbances recorded in two different power networks and from synthetic data. The experimental results shown high accuracy in classification with training data from one power network and unseen testing data from another. High accuracy was also achieved when the SVM classifier was trained on data from a real power network and test data originated from synthetic data. A lower accuracy resulted when the SVM classifier was trained on synthetic data and test data originated from the power network.

sted, utgiver, år, opplag, sider
2007. Vol. 22, nr 3, s. 1297-1303
HSV kategori
Forskningsprogram
Elkraftteknik; Energiteknik
Identifikatorer
URN: urn:nbn:se:ltu:diva-2612DOI: 10.1109/TPWRD.2007.900065ISI: 000247605900002Scopus ID: 2-s2.0-38949086030Lokal ID: 03f3dd10-a498-11dc-8fee-000ea68e967bOAI: oai:DiVA.org:ltu-2612DiVA, id: diva2:975465
Merknad
Validerad; 2007; 20071207 (matbol)Tilgjengelig fra: 2016-09-29 Laget: 2016-09-29 Sist oppdatert: 2018-07-10bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Bollen, Math

Søk i DiVA

Av forfatter/redaktør
Bollen, Math
Av organisasjonen
I samme tidsskrift
IEEE Transactions on Power Delivery

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 42 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf