Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Application of multi regressive linear model and neural network for wear prediction of grinding mill liners
Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Drift, underhåll och akustik.
Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Drift, underhåll och akustik.
2013 (engelsk)Inngår i: International Journal of Advanced Computer Sciences and Applications, ISSN 2158-107X, E-ISSN 2156-5570, Vol. 4, nr 5, s. 53-58Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

The liner of an ore grinding mill is a critical component in the grinding process, necessary for both high metal recovery and shell protection. From an economic point of view, it is important to keep mill liners in operation as long as possible, minimising the downtime for maintenance or repair. Therefore, predicting their wear is crucial. This paper tests different methods of predicting wear in the context of remaining height and remaining life of the liners. The key concern is to make decisions on replacement and maintenance without stopping the mill for extra inspection as this leads to financial savings. The paper applies linear multiple regression and artificial neural networks (ANN) techniques to determine the most suitable methodology for predicting wear. The advantages of the ANN model over the traditional approach of multiple regression analysis include its high accuracy.

sted, utgiver, år, opplag, sider
2013. Vol. 4, nr 5, s. 53-58
HSV kategori
Forskningsprogram
Drift och underhållsteknik
Identifikatorer
URN: urn:nbn:se:ltu:diva-4076Lokal ID: 1f04f3d6-d8c2-46d1-9d6e-2c8187d0ec45OAI: oai:DiVA.org:ltu-4076DiVA, id: diva2:976938
Merknad
Godkänd; 2013; 20130708 (farahm)Tilgjengelig fra: 2016-09-29 Laget: 2016-09-29 Sist oppdatert: 2017-11-24bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

http://thesai.org/Publications/IJACSA

Personposter BETA

Ahmadzadeh, FarzanehLundberg, Jan

Søk i DiVA

Av forfatter/redaktør
Ahmadzadeh, FarzanehLundberg, Jan
Av organisasjonen
I samme tidsskrift
International Journal of Advanced Computer Sciences and Applications

Søk utenfor DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric

urn-nbn
Totalt: 210 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf