Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Modeling of molecular gas adsorption isotherms on porous materials with hybrid PC-SAFT-DFT
Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing University of Technology, College of Chemistry and Chemical Engineering, Nanjing University of Technology.
Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.ORCID-id: 0000-0002-0200-9960
2014 (Engelska)Ingår i: Fluid Phase Equilibria, ISSN 0378-3812, E-ISSN 1879-0224, Vol. 382, s. 116-126Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The developed hybrid PC-SAFT-DFT model, a coupling of density functional theory (DFT) with perturbed-chain statistical associating fluid theory (PC-SAFT), was used to study the adsorption of pure- and mixed-fluids on nano-porous materials, and carbons and zeolites were chosen as examples of nano-porous materials in this work for model performance evaluation. In the PC-SAFT-DFT model, the modified fundamental measure theory was used for the hard sphere contribution, the dispersion free energy functional was represented with a weighted density approximation, and the chain free energy functional from interfacial SAFT was used to account for the chain connectivity. The fluid was modeled as a chain molecule with molecular parameters taken from those in the bulk PC-SAFT. The external force field was used to describe the interaction between the solid surface of a nano-porous material and fluid. Application of this model was demonstrated on the gas adsorption on porous carbons and zeolites which were assumed to have slit- and cylinder-shaped pores with mean pore sizes, respectively. The parameters of the adsorption model were obtained by fitting to the pure-gas adsorption isotherms measured experimentally. With parameters of the model fitted to the pure-gas adsorption at one temperature, the model was used to predict the pure-gas adsorption at other temperatures as well as the adoption isotherms of mixtures. The model prediction was compared with the available experimental data, which shows that the predictions are reliable for most of the systems studied in this work. The effect of the pore size distribution on the model performance was further investigated, and it was found that the consideration of the pore size distribution (PSD) can improve the accuracy of the model results but the PSD analysis requires much more computing time.

Ort, förlag, år, upplaga, sidor
2014. Vol. 382, s. 116-126
Nationell ämneskategori
Energiteknik
Forskningsämne
Energiteknik
Identifikatorer
URN: urn:nbn:se:ltu:diva-5293DOI: 10.1016/j.fluid.2014.09.002ISI: 000345183100014Scopus ID: 2-s2.0-84907537449Lokalt ID: 35b89967-c5bb-4a35-8278-9c404adfed74OAI: oai:DiVA.org:ltu-5293DiVA, id: diva2:978167
Anmärkning
Validerad; 2014; 20140910 (andbra)Tillgänglig från: 2016-09-29 Skapad: 2016-09-29 Senast uppdaterad: 2018-07-10Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Shen, GulouJi, Xiaoyan

Sök vidare i DiVA

Av författaren/redaktören
Shen, GulouJi, Xiaoyan
Av organisationen
Energivetenskap
I samma tidskrift
Fluid Phase Equilibria
Energiteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 92 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf