Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Impact of Autocorrelation on Principal Components and Their Use in Statistical Process Control
Luleå tekniska universitet, Institutionen för ekonomi, teknik och samhälle, Industriell Ekonomi.ORCID-id: 0000-0003-1473-3670
Luleå tekniska universitet, Institutionen för ekonomi, teknik och samhälle, Industriell Ekonomi.ORCID-id: 0000-0003-4222-9631
2016 (engelsk)Inngår i: Quality and Reliability Engineering International, ISSN 0748-8017, E-ISSN 1099-1638, Vol. 32, nr 4, s. 1483-1500Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

A basic assumption when using principal component analysis (PCA) for inferential purposes, such as in statistical process control (SPC) is that the data are independent in time. In many industrial processes frequent sampling and process dynamics make this assumption unrealistic rendering sampled data autocorrelated (serially dependent). PCA can be used to reduce data dimensionality and to simplify multivariate SPC. Although there have been some attempts in the literature to deal with autocorrelated data in PCA, we argue that the impact of autocorrelation on PCA and PCA-based SPC is neither well understood nor properly documented.This article illustrates through simulations the impact of autocorrelation on the descriptive ability of PCA and on the monitoring performance using PCA-based SPC when autocorrelation is ignored. In the simulations cross- and autocorrelated data are generated using a stationary first order vector autoregressive model.The results show that the descriptive ability of PCA may be seriously affected by autocorrelation causing a need to incorporate additional principal components to maintain the model’s explanatory ability. When all variables have the same autocorrelation coefficients the descriptive ability is intact while a significant impact occurs when the variables have different degrees of autocorrelation. We also illustrate that autocorrelation may impact PCA-based SPC and cause lower false alarm rates and delayed shift detection, especially for negative autocorrelation. However, for larger shifts the impact of autocorrelation seems rather small.

sted, utgiver, år, opplag, sider
2016. Vol. 32, nr 4, s. 1483-1500
HSV kategori
Forskningsprogram
Kvalitetsteknik
Identifikatorer
URN: urn:nbn:se:ltu:diva-8508DOI: 10.1002/qre.1858ISI: 000374681200016Scopus ID: 2-s2.0-84940099793Lokal ID: 705771ca-5615-41b6-ae3e-b4f8830b2252OAI: oai:DiVA.org:ltu-8508DiVA, id: diva2:981446
Prosjekter
Statistiska metoder för förbättring av kontinuerliga tillverkningsprocesser
Merknad
Validerad; 2016; Nivå 2; 20150722 (erivan)Tilgjengelig fra: 2016-09-29 Laget: 2016-09-29 Sist oppdatert: 2018-07-10bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Vanhatalo, ErikKulahci, Murat

Søk i DiVA

Av forfatter/redaktør
Vanhatalo, ErikKulahci, Murat
Av organisasjonen
I samme tidsskrift
Quality and Reliability Engineering International

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 174 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf