Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Road surface status classification using spectral analysis of NIR camera images
Combitech AB, Mittuniversitetet.
Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Strömningslära och experimentell mekanik.
Mittuniversitetet.
2015 (engelsk)Inngår i: IEEE Sensors Journal, ISSN 1530-437X, E-ISSN 1558-1748, Vol. 15, nr 3, s. 1641-1656Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

There is a need for an automated road status classification system considering the vast number of weather-related accidents that occur every winter. Previous research has shown that it is possible to detect hazardous road conditions, including, for example, icy pavements, using single point infrared illumination and infrared detectors. In this paper, we extend this research into camera surveillance of a road section allowing for classification of area segments of weather-related road surface conditions such as wet, snow covered, or icy. Infrared images have been obtained using an infrared camera equipped with a set of optical wavelength filters. The images have primarily been used to develop multivariate data models and also for the classification of road conditions in each pixel. This system is a vast improvement on existing single spot road status classification systems. The resulting imaging system can reliably distinguish between dry, wet, icy, or snow covered sections on road surfaces.

sted, utgiver, år, opplag, sider
2015. Vol. 15, nr 3, s. 1641-1656
HSV kategori
Forskningsprogram
Experimentell mekanik
Identifikatorer
URN: urn:nbn:se:ltu:diva-8788DOI: 10.1109/JSEN.2014.2364854ISI: 000348858300008Scopus ID: 2-s2.0-84921047416Lokal ID: 754133e6-fa6e-4d90-84fe-1a44fce98f95OAI: oai:DiVA.org:ltu-8788DiVA, id: diva2:981726
Prosjekter
CASTT - Centre for Automotive Systems Technologies and Testing
Merknad
Validerad; 2015; Nivå 2; 20140923 (johcas)Tilgjengelig fra: 2016-09-29 Laget: 2016-09-29 Sist oppdatert: 2018-07-10bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Casselgren, Johan

Søk i DiVA

Av forfatter/redaktør
Casselgren, Johan
Av organisasjonen
I samme tidsskrift
IEEE Sensors Journal

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 172 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf