Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Identifying Process Dynamics through a Two-Level Factorial Experiment
Luleå tekniska universitet, Institutionen för ekonomi, teknik och samhälle, Industriell Ekonomi.
Luleå tekniska universitet, Institutionen för ekonomi, teknik och samhälle, Industriell Ekonomi.ORCID-id: 0000-0003-1473-3670
2014 (engelsk)Inngår i: Quality Engineering, ISSN 0898-2112, E-ISSN 1532-4222, Vol. 26, nr 2, s. 154-167Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Industrial experiments are often subjected to critical disturbances and in a small design with few runs the loss of experimental runs may dramatically reduce analysis power. This article considers a common situation in process industry where the observed responses are represented by time series. A time series analysis approach to analyze two-level factorial designs affected by disturbances is developed and illustrated by analyzing a blast furnace experiment. In particular, a method based on transfer function-noise modeling is compared with a ‘traditional’ analysis using averages of the response in each run as the single response in an analysis of variance (ANOVA).

Abstract [en]

Dynamic processes undergo a transition time when changing experimental factors and therefore an experimenter is often interested in estimating effect dynamics alongside effect sizes. This article illustrates an eight-step analysis procedure for model identification of a multiple-input transfer function–noise model for the response from a two-level factorial experiment in a blast furnace process. Because real data often are affected by disturbances and missing observations, our proposed procedure deals with these problems and results in a transfer function–noise model that captures system dynamics and provides effect estimates from the experiment.

sted, utgiver, år, opplag, sider
2014. Vol. 26, nr 2, s. 154-167
HSV kategori
Forskningsprogram
Kvalitetsteknik
Identifikatorer
URN: urn:nbn:se:ltu:diva-11505DOI: 10.1080/08982112.2013.830738ISI: 000334045900002Scopus ID: 2-s2.0-84899029765Lokal ID: a7ef5a7e-a6a1-4b17-946c-d502bf8ef379OAI: oai:DiVA.org:ltu-11505DiVA, id: diva2:984455
Merknad
Validerad; 2014; 20120810 (pedlun)Tilgjengelig fra: 2016-09-29 Laget: 2016-09-29 Sist oppdatert: 2018-07-10bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Lundkvist, PederVanhatalo, Erik

Søk i DiVA

Av forfatter/redaktør
Lundkvist, PederVanhatalo, Erik
Av organisasjonen
I samme tidsskrift
Quality Engineering

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 242 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf