Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Towards automatic detection of local bearing defects in rotating machines
Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Matematiska vetenskaper.ORCID-id: 0000-0001-7620-9386
Luleå tekniska universitet.
Vise andre og tillknytning
2005 (engelsk)Inngår i: Mechanical systems and signal processing, ISSN 0888-3270, E-ISSN 1096-1216, Vol. 19, nr 3, s. 509-535Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

In this paper we derive and compare several different vibration analysis techniques for automatic detection of local defects in bearings. Based on a signal model and a discussion on to what extent a good bearing monitoring method should trust it, we present several analysis tools for bearing condition monitoring and conclude that wavelets are especially well suited for this task. Then we describe a large-scale evaluation of several different automatic bearing monitoring methods using 103 laboratory and industrial environment test signals for which the true condition of the bearing is known from visual inspection. We describe the four best performing methods in detail (two wavelet-based, and two based on envelope and periodisation techniques). In our basic implementation, without using historical data or adapting the methods to (roughly) known machine or signal parameters, the four best methods had 9–13% error rate and are all good candidates for further fine-tuning and optimisation. Especially for the wavelet-based methods, there are several potentially performance improving additions, which we finally summarise into a guiding list of suggestion.

sted, utgiver, år, opplag, sider
2005. Vol. 19, nr 3, s. 509-535
HSV kategori
Forskningsprogram
Matematik
Identifikatorer
URN: urn:nbn:se:ltu:diva-12481DOI: 10.1016/j.ymssp.2003.12.004ISI: 000225868200005Scopus ID: 2-s2.0-4544293192Lokal ID: ba3b6cb0-6fd7-11db-962b-000ea68e967bOAI: oai:DiVA.org:ltu-12481DiVA, id: diva2:985432
Merknad
Validerad; 2005; 20061109 (evan)Tilgjengelig fra: 2016-09-29 Laget: 2016-09-29 Sist oppdatert: 2018-07-10bibliografisk kontrollert

Open Access i DiVA

fulltekst(2108 kB)107 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 2108 kBChecksum SHA-512
39a685b8bff74be213ccef45f002737fd3cc830fc14f63e943d6f55cad4216bc1dc48e01aa8eceeaea7b27581ee643fef2eaec152f7692536d510292b41d4625
Type fulltextMimetype application/pdf
fulltekst(2023 kB)116 nedlastinger
Filinformasjon
Fil FULLTEXT02.pdfFilstørrelse 2023 kBChecksum SHA-512
7fc0e7e3f976ff9846595fc2ece3dd4bd066b14eb02a043944b999362a964afbc7fedd17dcb01be476c3e4b8855b73ddf1b7a6584d5e70d8038b0695cc7d39d7
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Ericsson, StefanGrip, NiklasPersson, Lars-Erik

Søk i DiVA

Av forfatter/redaktør
Ericsson, StefanGrip, NiklasPersson, Lars-Erik
Av organisasjonen
I samme tidsskrift
Mechanical systems and signal processing

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 223 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 199 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf