Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Multivariate process parameter change identification by neural network
Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Drift, underhåll och akustik.
Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Drift, underhåll och akustik.
Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Matematiska vetenskaper.
2013 (engelsk)Inngår i: The International Journal of Advanced Manufacturing Technology, ISSN 0268-3768, E-ISSN 1433-3015, Vol. 69, nr 9-12, s. 2261-2268Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Whenever there is an out-of-control signal in process parameter control charts, maintenance engineers try to diagnose the cause near the time of the signal which is not always lead to prompt identification of the source(s) of the out-of-control condition and this in some cases yields to extremely high monetary loses for manufacture owner. This paper applies multivariate exponentially weighted moving average (MEWMA) control charts and neural networks to make the signal identification more effective. The simulation of this procedure shows that this new control chart can be very effective in detecting the actual change point for all process dimension and all shift magnitudes considered. This methodology can be used in manufacturing and process industries to predict change points and expedite the search for failure causing parameters, resulting in improved quality at reduced overall cost. This research shows development of MEWMA by usage of neural network for identifying the step change point and the variable responsible for the change in the process mean vector.

sted, utgiver, år, opplag, sider
2013. Vol. 69, nr 9-12, s. 2261-2268
HSV kategori
Forskningsprogram
Drift och underhållsteknik
Identifikatorer
URN: urn:nbn:se:ltu:diva-12696DOI: 10.1007/s00170-013-5200-xISI: 000327095900030Scopus ID: 2-s2.0-84892371787Lokal ID: bdbcaab3-37f3-415c-9607-e6abe6dde418OAI: oai:DiVA.org:ltu-12696DiVA, id: diva2:985647
Merknad
Validerad; 2013; 20130708 (farahm)Tilgjengelig fra: 2016-09-29 Laget: 2016-09-29 Sist oppdatert: 2018-07-10bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Ahmadzadeh, FarzanehLundberg, JanStrömberg, Thomas

Søk i DiVA

Av forfatter/redaktør
Ahmadzadeh, FarzanehLundberg, JanStrömberg, Thomas
Av organisasjonen
I samme tidsskrift
The International Journal of Advanced Manufacturing Technology

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 363 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf