Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Analyzing Body Movements within the Laban Effort Framework using a Single Accelerometer
Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Computer Science.
Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Computer Science.
Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Computer Science.
Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Computer Science.ORCID iD: 0000-0003-3191-8335
Show others and affiliations
2014 (English)In: Sensors, ISSN 1424-8220, E-ISSN 1424-8220, Vol. 14, no 3, p. 5725-41Article in journal (Refereed) Published
Abstract [en]

This article presents a study on analyzing body movements by using a single accelerometer sensor. The investigated categories of body movements belong to the Laban Effort Framework: Strong - Light, Free – Bound and Sudden - Sustained. All body movements were represented by a set of activities used for data collection. The calculated accuracy of detecting the body movements was based on collecting data from a single wireless tri-axial accelerometer sensor. Ten healthy subjects collected data from three body locations (chest, wrist and thigh) simultaneously in order to analyze the locations comparatively. The data was then processed and analyzed using Machine Learning techniques. The wrist placement was found to be the best single location to record data for detecting (Strong – Light) body movements using the Random Forest classifier. The wrist placement was also the best location for classifying (Bound – Free) body movements using the SVM classifier. However, the data collected from the chest placement yielded the best results for detecting (Sudden – Sustained) body movements using the Random Forest classifier. The study shows that the choice of the accelerometer placement should depend on the targeted type of movement. In addition, the choice of the classifier when processing data should also depend on the chosen location and the target movement.

Place, publisher, year, edition, pages
2014. Vol. 14, no 3, p. 5725-41
National Category
Media and Communication Technology
Research subject
Mobile and Pervasive Computing
Identifiers
URN: urn:nbn:se:ltu:diva-14175DOI: 10.3390/s140305725ISI: 000336783300101PubMedID: 24662408Local ID: d869bee7-d398-4f28-a6fc-b928a102737cOAI: oai:DiVA.org:ltu-14175DiVA, id: diva2:987129
Note
Validerad; 2014; 20140311 (basel)Available from: 2016-09-29 Created: 2016-09-29 Last updated: 2018-10-15Bibliographically approved
In thesis
1. Unobtrusive Activity Recognition in Resource-Constrained Environments
Open this publication in new window or tab >>Unobtrusive Activity Recognition in Resource-Constrained Environments
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Alternative title[sv]
Diskret Aktivitetsigenkänning i Resursbegränsade Miljöer
Abstract [en]

This thesis discusses activity recognition from a perspective of unobtrusiveness, where devices are worn or placed in the environment without being stigmatising or in the way. The research focuses on performing unobtrusive activity recognition when computational and sensing resources are scarce. This includes investigating unobtrusive ways to gather data, as well as adapting data modelling and classification to small, resource-constrained, devices.

The work presents different aspects of data collection and data modelling when only using unobtrusive sensing. This is achieved by considering how different sensor placements affects prediction performance and how activity models can be created when using a single sensor, or when using a number of simple binary sensors, to perform movement analysis, recognise everyday activities, and perform stress detection. The work also investigates how classification can be performed on resource-constrained devices, resulting in a novel computation-efficient classifier and an efficient hand-made classification model. The work finally sets unobtrusive activity recognition into real-life contexts where it can be used for interventions to reduce stress, sedentary behaviour and symptoms of dementia.

The results indicate that activities can be recognised unobtrusively and that classification can be performed even on resource-constrained devices. This allows for monitoring a user’s activities over extensive periods, which could be used for creating highly personal digital interventions and in-time advice that help users make positive behaviour changes. Such digital health interventions based on unobtrusive activity recognition for resource-constrained environments are important for addressing societal challenges of today, such as sedentary behaviour, stress, obesity, and chronic diseases. The final conclusion is that unobtrusive activity recognition is a cornerstone necessary for bringing many digital health interventions into a wider use.

Abstract [sv]

Denna avhandling diskuterar aktivitetsigenkänning ur ett diskret perspektiv, där enheter bärs eller placeras i miljön utan att vara stigmatiserande eller i vägen. Forskningen fokuserar på att utföra diskret aktivitetsigenkänning när beräknings- och sensor-resurser är knappa. Detta inkluderar att undersöka diskreta sätt att samla in data, samt att anpassa datamodellering och klassificering till små, resursbegränsade enheter.

Arbetet presenterar olika aspekter av datainsamling och datamodellering när man bara använder diskreta sensorer. Detta uppnås genom att överväga hur olika sensorplaceringar påverkar prediktionsprestanda och hur aktivitetsmodeller kan skapas vid användning av en enda sensor eller vid användning av ett antal enkla binära sensorer, för att utföra rörelsesanalys, känna igen vardagliga aktiviteter och utföra stressdetektering. Arbetet undersöker också hur klassificering kan utföras på resursbegränsade enheter, vilket resulterar i en ny beräkningseffektiv klassificeringsalgoritm och en effektiv handgjord klassificeringsmodell. Slutligen sätter arbetet in diskret aktivitetsigenkänning i verkliga sammanhang där det kan användas för interventioner för att minska stress, stillasittande  beteende och symptom på demens.

Resultaten visar att diskret aktivitetsigenkänning är möjligt och att klassificeringen kan utföras även på resursbegränsade enheter. Detta möjliggör övervakning av användarens aktiviteter under längre  perioder, vilket kan användas för att skapa personliga digitala interventioner och tidsanpassad rådgivning som hjälper användarna att göra positiva beteendeförändringar. Sådana digitala hälsointerventioner baserade på diskret aktivitetsigenkänning i resursbegränsade miljöer är viktiga för att ta itu med dagens samhällsutmaningar, såsom stillasittande beteende, stress, fetma och kroniska sjukdomar. En slutsats av arbetet är att diskret aktivitetsigenkänning är en hörnsten som är nödvändig för att få en större användning av digitala hälsointerventioner.

Place, publisher, year, edition, pages
Luleå: Luleå University of Technology, 2018
Series
Doctoral thesis / Luleå University of Technology 1 jan 1997 → …, ISSN 1402-1544
National Category
Computer Sciences Media and Communication Technology
Research subject
Pervasive Mobile Computing
Identifiers
urn:nbn:se:ltu:diva-71073 (URN)978-91-7790-232-4 (ISBN)978-91-7790-233-1 (ISBN)
Public defence
2018-12-11, C305, Luleå Tekniska Universitet, 97187 Luleå, Luleå, 09:00 (English)
Opponent
Supervisors
Available from: 2018-10-16 Created: 2018-10-15 Last updated: 2018-12-28Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Authority records BETA

Kikhia, BaselSimon, Miguel GomezJimenez, Lara LornaHallberg, JosefKarvonen, NiklasSynnes, Kåre

Search in DiVA

By author/editor
Kikhia, BaselSimon, Miguel GomezJimenez, Lara LornaHallberg, JosefKarvonen, NiklasSynnes, Kåre
By organisation
Computer Science
In the same journal
Sensors
Media and Communication Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 473 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf