Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Analyzing Body Movements within the Laban Effort Framework using a Single Accelerometer
Luleå tekniska universitet, Institutionen för system- och rymdteknik, Datavetenskap.
Luleå tekniska universitet, Institutionen för system- och rymdteknik, Datavetenskap.
Luleå tekniska universitet, Institutionen för system- och rymdteknik, Datavetenskap.
Luleå tekniska universitet, Institutionen för system- och rymdteknik, Datavetenskap.ORCID-id: 0000-0003-3191-8335
Vise andre og tillknytning
2014 (engelsk)Inngår i: Sensors, ISSN 1424-8220, E-ISSN 1424-8220, Vol. 14, nr 3, s. 5725-41Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

This article presents a study on analyzing body movements by using a single accelerometer sensor. The investigated categories of body movements belong to the Laban Effort Framework: Strong - Light, Free – Bound and Sudden - Sustained. All body movements were represented by a set of activities used for data collection. The calculated accuracy of detecting the body movements was based on collecting data from a single wireless tri-axial accelerometer sensor. Ten healthy subjects collected data from three body locations (chest, wrist and thigh) simultaneously in order to analyze the locations comparatively. The data was then processed and analyzed using Machine Learning techniques. The wrist placement was found to be the best single location to record data for detecting (Strong – Light) body movements using the Random Forest classifier. The wrist placement was also the best location for classifying (Bound – Free) body movements using the SVM classifier. However, the data collected from the chest placement yielded the best results for detecting (Sudden – Sustained) body movements using the Random Forest classifier. The study shows that the choice of the accelerometer placement should depend on the targeted type of movement. In addition, the choice of the classifier when processing data should also depend on the chosen location and the target movement.

sted, utgiver, år, opplag, sider
2014. Vol. 14, nr 3, s. 5725-41
HSV kategori
Forskningsprogram
Distribuerade datorsystem
Identifikatorer
URN: urn:nbn:se:ltu:diva-14175DOI: 10.3390/s140305725ISI: 000336783300101PubMedID: 24662408Lokal ID: d869bee7-d398-4f28-a6fc-b928a102737cOAI: oai:DiVA.org:ltu-14175DiVA, id: diva2:987129
Merknad
Validerad; 2014; 20140311 (basel)Tilgjengelig fra: 2016-09-29 Laget: 2016-09-29 Sist oppdatert: 2018-10-15bibliografisk kontrollert
Inngår i avhandling
1. Unobtrusive Activity Recognition in Resource-Constrained Environments
Åpne denne publikasjonen i ny fane eller vindu >>Unobtrusive Activity Recognition in Resource-Constrained Environments
2018 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Alternativ tittel[sv]
Diskret Aktivitetsigenkänning i Resursbegränsade Miljöer
Abstract [en]

This thesis discusses activity recognition from a perspective of unobtrusiveness, where devices are worn or placed in the environment without being stigmatising or in the way. The research focuses on performing unobtrusive activity recognition when computational and sensing resources are scarce. This includes investigating unobtrusive ways to gather data, as well as adapting data modelling and classification to small, resource-constrained, devices.

The work presents different aspects of data collection and data modelling when only using unobtrusive sensing. This is achieved by considering how different sensor placements affects prediction performance and how activity models can be created when using a single sensor, or when using a number of simple binary sensors, to perform movement analysis, recognise everyday activities, and perform stress detection. The work also investigates how classification can be performed on resource-constrained devices, resulting in a novel computation-efficient classifier and an efficient hand-made classification model. The work finally sets unobtrusive activity recognition into real-life contexts where it can be used for interventions to reduce stress, sedentary behaviour and symptoms of dementia.

The results indicate that activities can be recognised unobtrusively and that classification can be performed even on resource-constrained devices. This allows for monitoring a user’s activities over extensive periods, which could be used for creating highly personal digital interventions and in-time advice that help users make positive behaviour changes. Such digital health interventions based on unobtrusive activity recognition for resource-constrained environments are important for addressing societal challenges of today, such as sedentary behaviour, stress, obesity, and chronic diseases. The final conclusion is that unobtrusive activity recognition is a cornerstone necessary for bringing many digital health interventions into a wider use.

Abstract [sv]

Denna avhandling diskuterar aktivitetsigenkänning ur ett diskret perspektiv, där enheter bärs eller placeras i miljön utan att vara stigmatiserande eller i vägen. Forskningen fokuserar på att utföra diskret aktivitetsigenkänning när beräknings- och sensor-resurser är knappa. Detta inkluderar att undersöka diskreta sätt att samla in data, samt att anpassa datamodellering och klassificering till små, resursbegränsade enheter.

Arbetet presenterar olika aspekter av datainsamling och datamodellering när man bara använder diskreta sensorer. Detta uppnås genom att överväga hur olika sensorplaceringar påverkar prediktionsprestanda och hur aktivitetsmodeller kan skapas vid användning av en enda sensor eller vid användning av ett antal enkla binära sensorer, för att utföra rörelsesanalys, känna igen vardagliga aktiviteter och utföra stressdetektering. Arbetet undersöker också hur klassificering kan utföras på resursbegränsade enheter, vilket resulterar i en ny beräkningseffektiv klassificeringsalgoritm och en effektiv handgjord klassificeringsmodell. Slutligen sätter arbetet in diskret aktivitetsigenkänning i verkliga sammanhang där det kan användas för interventioner för att minska stress, stillasittande  beteende och symptom på demens.

Resultaten visar att diskret aktivitetsigenkänning är möjligt och att klassificeringen kan utföras även på resursbegränsade enheter. Detta möjliggör övervakning av användarens aktiviteter under längre  perioder, vilket kan användas för att skapa personliga digitala interventioner och tidsanpassad rådgivning som hjälper användarna att göra positiva beteendeförändringar. Sådana digitala hälsointerventioner baserade på diskret aktivitetsigenkänning i resursbegränsade miljöer är viktiga för att ta itu med dagens samhällsutmaningar, såsom stillasittande beteende, stress, fetma och kroniska sjukdomar. En slutsats av arbetet är att diskret aktivitetsigenkänning är en hörnsten som är nödvändig för att få en större användning av digitala hälsointerventioner.

sted, utgiver, år, opplag, sider
Luleå: Luleå University of Technology, 2018
Serie
Doctoral thesis / Luleå University of Technology 1 jan 1997 → …, ISSN 1402-1544
HSV kategori
Forskningsprogram
Distribuerade datorsystem
Identifikatorer
urn:nbn:se:ltu:diva-71073 (URN)978-91-7790-232-4 (ISBN)978-91-7790-233-1 (ISBN)
Disputas
2018-12-11, C305, Luleå Tekniska Universitet, 97187 Luleå, Luleå, 09:00 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2018-10-16 Laget: 2018-10-15 Sist oppdatert: 2018-12-28bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstPubMed

Personposter BETA

Kikhia, BaselSimon, Miguel GomezJimenez, Lara LornaHallberg, JosefKarvonen, NiklasSynnes, Kåre

Søk i DiVA

Av forfatter/redaktør
Kikhia, BaselSimon, Miguel GomezJimenez, Lara LornaHallberg, JosefKarvonen, NiklasSynnes, Kåre
Av organisasjonen
I samme tidsskrift
Sensors

Søk utenfor DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 473 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf