Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A physical compact model for electron transport across single molecules
Department of Materials Science and Engineering, Royal Institute of Technology.
Department of Physical Electronic/Photonic, Mitthögskolan.
Tyndall National Institute, University College Cork.
2006 (Engelska)Ingår i: IEEE transactions on nanotechnology, ISSN 1536-125X, E-ISSN 1941-0085, Vol. 5, nr 6, s. 745-749Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Prediction of current flow across single molecules requires ab initio electronic structure calculations along with their associated high computational demand, and a means for incorporating open system boundary conditions to describe the voltage sources driving the current. To date, first principle predictions of electron transport across single molecules have not fully achieved a predictive capability. The situation for molecular electronics may be compared to conventional technology computer-aided design (TCAD), whereby various approximations to the Boltzmann transport equation are solved to predict electronic device behavior, but in practice are too time consuming for most circuit design applications. To simplify device models for circuit design, analytical but physically motivated models are introduced to capture the behavior of active and passive devices; however, similar models do not yet exist for molecular electronics. We follow a similar approach by evaluating an analytical model achieved by combining a mesoscopic transport model with parameterizations taken from quantum chemical calculations of the electronic structure of single molecule bonded between two metal contacts. Using the model to describe electron transport across benzene-1,4-dithiol and by comparing to experiment, we are able to extract the coupling strength of the molecule attached to two infinite metal electrodes. The resulting procedure allows for accurate and computationally efficient modeling of the static (dc) characteristics of a single molecule, with the added capability of being able to study the physical model parameter variations across a range of experiments. Such simple physical models are also an important step towards developing a design methodology for molecular electronics

Ort, förlag, år, upplaga, sidor
2006. Vol. 5, nr 6, s. 745-749
Identifikatorer
URN: urn:nbn:se:ltu:diva-16252DOI: 10.1109/TNANO.2006.883485Lokalt ID: fdddb0bf-3b9a-45be-839c-d008eeb1f4d2OAI: oai:DiVA.org:ltu-16252DiVA, id: diva2:989228
Anmärkning
Upprättat; 2006; 20130302 (andbra)Tillgänglig från: 2016-09-29 Skapad: 2016-09-29 Senast uppdaterad: 2017-11-24Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Personposter BETA

Larsson, Andreas

Sök vidare i DiVA

Av författaren/redaktören
Larsson, Andreas
I samma tidskrift
IEEE transactions on nanotechnology

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 193 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf