Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Pattern Recognition with Vector Symbolic Architectures
Luleå tekniska universitet, Institutionen för system- och rymdteknik, Datavetenskap.ORCID-id: 0000-0002-6032-6155
2016 (Engelska)Licentiatavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Pattern recognition is an area constantly enlarging its theoretical and practical horizons. Applications of pattern recognition and machine learning can be found in many areas of the present day world including health-care, robotics, manufacturing, economics, automation, transportation, etc. Despite some success in many domains pattern recognition algorithms are still far from being close to their biological vis-a-vis – human brain. New possibilities in the area of pattern recognition may be achieved by application of biologically inspired approaches. This thesis presents the usage of a bio-inspired method of representing concepts and their meaning – Vector Symbolic Architectures – in the context of pattern recognition with possible applications in intelligent transportation systems, automation systems, and language processing. Vector Symbolic Architectures is an approach for encoding and manipulating distributed representations of information. They have previously been used mainly in the area of cognitive computing for representing and reasoning upon semantically bound information. First, it is shown that Vector Symbolic Architectures are capable of pattern classification of temporal patterns. With this approach, it is possible to represent, learn and subsequently classify vehicles using measurements from vibration sensors.Next, an architecture called Holographic Graph Neuron for one-shot learning of patterns of generic sensor stimuli is proposed. The architecture is based on implementing the Hierarchical Graph Neuron approach using Vector Symbolic Architectures. Holographic Graph Neuron shows the previously reported performance characteristics of Hierarchical Graph Neuron while maintaining the simplicity of its design. The Holographic Graph Neuron architecture is applied in two domains: fault detection and longest common substrings search. In the area of fault detection the architecture showed superior performance compared to classical methods of artificial intelligence while featuring zero configuration and simple operations. The application of the architecture for longest common substrings search showed its ability to robustly solve the task given that the length of a common substring is longer than 4% of the longest pattern. Furthermore, the required number of operations on binary vectors is equal to the suffix trees approach, which is the fastest traditional algorithm for this problem. In summary, the work presented in this thesis extends understanding of the performance proprieties of distributed representations and opens the way for new applications.

Ort, förlag, år, upplaga, sidor
Luleå tekniska universitet, 2016. , s. 136
Serie
Licentiate thesis / Luleå University of Technology, ISSN 1402-1757
Nationell ämneskategori
Datavetenskap (datalogi)
Forskningsämne
Kommunikations- och beräkningssystem
Identifikatorer
URN: urn:nbn:se:ltu:diva-17439Lokalt ID: 367cffae-c4a6-451f-81ce-10d2e520681aISBN: 978-91-7583-535-8 (tryckt)ISBN: 978-91-7583-536-5 (digital)OAI: oai:DiVA.org:ltu-17439DiVA, id: diva2:990444
Anmärkning
Godkänd; 2016; 20160207 (denkle); Nedanstående person kommer att hålla licentiatseminarium för avläggande av teknologie licentiatexamen. Namn: Denis Kleyko Ämne: Kommunikations- och beräkningssystem / Dependable Communication and Computation Systems Uppsats: Pattern Recognition with Vector Symbolic Architectures Examinator: Professor Evgeny Osipov Institutionen för system- och rymdteknik, Avdelning: Datavetenskap, Luleå tekniska universitet. Diskutant: Associate Professor Okko Räsänen, Aalto University, Department of Signal Processing and Acoustics, Finland. Tid: Måndag 21 mars, 2016 kl 10.00 Plats: A109, Luleå tekniska universitetTillgänglig från: 2016-09-29 Skapad: 2016-09-29 Senast uppdaterad: 2018-02-12Bibliografiskt granskad

Open Access i DiVA

fulltext(5088 kB)347 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 5088 kBChecksumma SHA-512
26bacda4d5be1e387f8b30dd56cc9e2a7f708602ddb126af0bbf95adce7605c42d18867e421dcffdda0969f87de336b366e1bf82b47cdc2ba6a383e33ce0bdf6
Typ fulltextMimetyp application/pdf

Personposter BETA

Kleyko, Denis

Sök vidare i DiVA

Av författaren/redaktören
Kleyko, Denis
Av organisationen
Datavetenskap
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 347 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

isbn
urn-nbn

Altmetricpoäng

isbn
urn-nbn
Totalt: 1452 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf