Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Embedding theorems for spaces with multiweighted derivatives
Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Matematiska vetenskaper.
2007 (engelsk)Licentiatavhandling, med artikler (Annet vitenskapelig)
Abstract [en]

This Licentiate Thesis consists of four chapters, which deal with a new Sobolev type function space called the space with multiweighted derivatives. This space is a generalization of the usual one dimensional Sobolev space. Chapter 1 is an introduction, where, in particular, the importance to study function spaces with weights is discussed and motivated. In Chapter 2 we consider and analyze some results of L. D. Kudryavtsev, where he investigated one dimensional Sobolev spaces. Moreover, in this chapter we present and prove analogous results by B. L. Baidel'dinov for generalized Sobolev spaces. These results are crucially for the proofs of the main results of this Licentiate Thesis. In Chapter 3 we prove some embedding theorems for these new generalized Sobolev spaces. The main results of Kudryavtsev and Baidel'dinov about characterization of the behavior of functions at a singularity take place in weak degeneration of spaces. However, with the help of our new embedding theorems we can extend these results to the case of strong degeneration. In Chapter 4 we prove some new estimates for each function in a Tchebychev system. In order to be able to study also compactness of the embeddings from Chapter 3 such estimates are crucial. I plan to study this question in detail in my further PhD studies.

sted, utgiver, år, opplag, sider
Luleå: Luleå tekniska universitet, 2007. , s. 84
Serie
Licentiate thesis / Luleå University of Technology, ISSN 1402-1757 ; 2007:53
HSV kategori
Forskningsprogram
Matematik
Identifikatorer
URN: urn:nbn:se:ltu:diva-26092Lokal ID: c9a3e4e0-8d25-11dc-a188-000ea68e967bOAI: oai:DiVA.org:ltu-26092DiVA, id: diva2:999251
Merknad

Godkänd; 2007; 20071107 (ysko)

Tilgjengelig fra: 2016-09-30 Laget: 2016-09-30 Sist oppdatert: 2018-02-27bibliografisk kontrollert

Open Access i DiVA

fulltekst(1288 kB)29 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 1288 kBChecksum SHA-512
391e44fba671f3dad32d836332afd9d18f54bd20b6db2e999f4845c5882a3945b12322b7465562063f1ec67731e87d8a66b188cf293f4b9e56b6e7e602be8f2e
Type fulltextMimetype application/pdf

Personposter BETA

Abdikalikova, Zamira

Søk i DiVA

Av forfatter/redaktør
Abdikalikova, Zamira
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 29 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 635 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf