Prostate cancer is the most common form of cancer and the third leading cause of cancer-related death in European men. There is a need for new methods that can accurately localize and diagnose prostate cancer. In this study a new approach is presented: a combination of resonance sensor technology and Raman spectroscopy. Both methods have shown promising results for prostate cancer detection in vitro. The aim of this study was to evaluate the combined information from measurements with a Raman fiberoptic probe and a resonance sensor system. Pork belly tissue was used as a model system. A three-dimensional translation table was equipped with an in-house developed software, allowing measurements to be performed at the same point using two separate instruments. The Raman data was analyzed using principal component analysis and hierarchical clustering analysis. The spectra were divided into 5 distinct groups. The mean stiffness of each group was calculated from the resonance sensor measurements. One of the groups differed significantly (p < 0.05) from the others. A regression analysis, with the stiffness parameter as response variable and the principal component scores of the Raman data as the predictor variables, explained 67% of the total variability. The use of a smaller resonance sensor tip would probably increase the degree of correlation. In conclusion, Raman spectroscopy provides additional discriminatory power to the resonance sensor
Validerad; 2009; Bibliografisk uppgift: Vol. 7 med titel: Diagnostic and Therapeutic Instrumentation, Clinical Engineering; 20090317 (candstef)