Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Statistics of the binary quantizer error in sigma-delta modulation with I.I.D. Gaussian input
Luleå tekniska universitet.
1993 (English)In: IProceedings: 1993 IEEE International Symposium on Information Theory, Hilton Palacio del Rio, San Antonio, Texas, U.S.A., January 17-22, 1993 / [ed] Robert M. Gray, Piscataway, NJ: IEEE Communications Society, 1993, p. 436-Conference paper, Published paper (Refereed)
Abstract [en]

existence and uniqueness of an invariant probability measure, ergodicity properties as well as the existence of moments w.r.t. the invariant probability are proved using Markov process theory. Considering ē as n random perturbation of the orbits of sn+1 = λ(sn) the structure of the power spectrum of the quantizer error is studied approximately for small values of the white noise variance using the deterministic signal sn under a uniform invariant distribution.

Abstract [en]

Representations and statistical properties of the process ē defined by ēn+1 = λ(ēn + ξn), where λ(u) := u - b sign(u) + m are given, when ξn is a Gaussian white noise. The process ē represents the binary quantizer error in a model for (single loop) Sigma Delta modulation, see [3,6]. The existence and uniqueness of an invariant probability measure, ergodicity properties as well as the existence of moments w.r.t. the invariant probability are proved using Markov process theory. Considering ē as n random perturbation of the orbits of sn+1 = λ(sn) the structure of the power spectrum of the quantizer error is studied approximately for small values of the white noise variance using the deterministic signal sn under a uniform invariant distribution.

Place, publisher, year, edition, pages
Piscataway, NJ: IEEE Communications Society, 1993. p. 436-
National Category
Mathematical Analysis
Research subject
Mathematics
Identifiers
URN: urn:nbn:se:ltu:diva-32671DOI: 10.1109/ISIT.1993.748752Local ID: 73b79f90-5597-11de-9f57-000ea68e967bISBN: 0-7803-0878-6 (print)OAI: oai:DiVA.org:ltu-32671DiVA, id: diva2:1005905
Conference
International Symposium on Information Theory : 17/01/1993 - 22/01/1993
Note
Godkänd; 1993; 20090610 (andbra)Available from: 2016-09-30 Created: 2016-09-30Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text
Mathematical Analysis

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 20 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf