We present a recurrent multimodal model of binding written words to mental objects and investigate the capability of the network in reading misspelt but categorically related words. Our model consists of three mutually interconnected association modules which store mental objects, represent their written names and bind these together to form mental concepts. A feedback gain controlling top-down influence is incorporated into the model architecture and it is shown that correct settings for this during map formation and simulated reading experiments is necessary for correct interpretation and semantic binding of the written words.
Validerad; 2011; 20111116 (ysko)