Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Type, cotype and convexity properties of quasi-Banach spaces
Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.ORCID iD: 0000-0002-9584-4083
2004 (English)In: Proceedings of the International Symposium on Banach and Function Spaces / [ed] Mikio Kato; Lech Maligranda, Yokohama: Yokohama Publishers, 2004, 83-120 p.Conference paper, Published paper (Refereed)
Abstract [en]

Results on quasi-Banach spaces, their type and cotype together with the convexity and concavity of quasi-Banach lattices are collected. Several proofs are included. Then the Lebesgue $L^p$, the Lorentz $L^{p,q}$ and the Marcinkiewicz $L^{p,\infty}$ spaces are the special examples. We review also several results of Kami\'nska and the author on convexity, concavity, type and cotype of general Lorentz spaces $\Lambda_{p,w}$

Place, publisher, year, edition, pages
Yokohama: Yokohama Publishers, 2004. 83-120 p.
National Category
Mathematical Analysis
Research subject
Mathematics
Identifiers
URN: urn:nbn:se:ltu:diva-34097Local ID: 83514a50-a60d-11db-9811-000ea68e967bISBN: 4-946552-14-6 (print)OAI: oai:DiVA.org:ltu-34097DiVA: diva2:1007347
Conference
International Symposium on Banach and Function Spaces : 02/10/2003 - 04/10/2003
Note
Godkänd; 2004; Bibliografisk uppgift: Varianttitel: Banach and function spaces; 20070116 (kani)Available from: 2016-09-30 Created: 2016-09-30 Last updated: 2017-10-19Bibliographically approved

Open Access in DiVA

fulltext(219 kB)88 downloads
File information
File name FULLTEXT01.pdfFile size 219 kBChecksum SHA-512
f2e749dcc43cc1c3de0406474e1da0f66112c7bda65982739319599e00a299a9d93bd8a406fe034747d1a60a782f40acf994706ec6ab096f2405265957df3ab3
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Maligranda, Lech
By organisation
Mathematical Science
Mathematical Analysis

Search outside of DiVA

GoogleGoogle Scholar
Total: 88 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 102 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf