Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Compactness of embedding between Sobolev type spaces with multiweighted derivatives
Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.
2009 (English)In: AIHT : Analysis, Inequalities and Homogenization Theory: Midnight sun conference in honor of Lars-Erik Persson, 2009Conference paper (Other academic)
Abstract [en]

We consider a new Sobolev type function space called the space with multiweighted derivatives. As basis for this space serves some differential operators containing weight functions. We establish necessary and sufficient conditions for the boundedness and compactness of the embedding between the spaces with multiweighted derivatives in different selections of weights.

Place, publisher, year, edition, pages
2009.
National Category
Mathematical Analysis
Research subject
Mathematics
Identifiers
URN: urn:nbn:se:ltu:diva-34781Local ID: 911d8150-5725-11de-9f57-000ea68e967bOAI: oai:DiVA.org:ltu-34781DiVA, id: diva2:1008032
Conference
Analysis, Inequalities and Homogenization Theory : 08/06/2009 - 11/06/2009
Note

Godkänd; 2009; 20090612 (evan)

Available from: 2016-09-30 Created: 2016-09-30 Last updated: 2018-02-27Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records BETA

Abdikalikova, Zamira

Search in DiVA

By author/editor
Abdikalikova, Zamira
By organisation
Mathematical Science
Mathematical Analysis

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 112 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf