Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Weighted Adams type theorem for the Riesz fractional integral in generalized Morrey Space
Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.ORCID iD: 0000-0003-1963-6829
Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.ORCID iD: 0000-0002-8595-4326
Number of Authors: 22016 (English)In: Fractional Calculus and Applied Analysis, ISSN 1311-0454, E-ISSN 1314-2224, Vol. 19, no 4, p. 954-972Article in journal (Refereed) Published
Abstract [en]

We prove the boundedness of the Riesz fractional integration operator from a generalized Morrey space L-p,L-phi to a certain Orlicz-Morrey space L-Phi,L-phi which covers the Adams result for Morrey spaces. We also give a generalization to the case of weighted Riesz fractional integration operators for some class of weights.

Place, publisher, year, edition, pages
2016. Vol. 19, no 4, p. 954-972
National Category
Mathematical Analysis
Research subject
Mathematics
Identifiers
URN: urn:nbn:se:ltu:diva-59748DOI: 10.1515/fca-2016-0052ISI: 000383390700014Scopus ID: 2-s2.0-84985023407OAI: oai:DiVA.org:ltu-59748DiVA, id: diva2:1037230
Note

Validerad; 2016; Nivå 2; 2016-10-14 (andbra)

Available from: 2016-10-14 Created: 2016-10-14 Last updated: 2023-09-05Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Burtseva, EvgeniyaSamko, Natasha

Search in DiVA

By author/editor
Burtseva, EvgeniyaSamko, Natasha
By organisation
Mathematical Science
In the same journal
Fractional Calculus and Applied Analysis
Mathematical Analysis

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 409 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf