Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Discrete Element Modelling of Footwall Rock Mass Damage Induced by Sub-Level Caving at the Kiirunavaara Mine
Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.ORCID iD: 0000-0002-4189-945X
Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
2017 (English)In: Minerals, ISSN 2075-163X, E-ISSN 2075-163X, Vol. 7, no 7, 109Article in journal (Refereed) Published
Abstract [en]

The Kiirunavaara mine is one of the largest sub-level-caving (SLC) mines in the worldand has been in underground operation for more than 50 years. The mine has been the focus ofseveral case studies over the years. The previous works have either focused on the caving of thehanging wall, using the footwall as a passive support, or focused on the footwall using the hangingwall to apply a passive load. In this updated study the findings of the previous case studies arecombined to study the interaction between the caving hanging wall, the developing cave rock zoneand the footwall. The geological data for the rock types in the mine area are used to derive upperand lower limits for the geomechanical parameters calibrated for numerical models in the previousstudies. The calibrated parameters are used as inputs to a numerical model constructed usingItasca’s Particle-flow-code (PFC) encompassing a mine-scale 2D section at the mid portion of themine. The model captures the failure locations well in the footwall underground and indicatesdamage development without a coherent large-scale failure. The trend in subsidence data on thehanging wall is adequately simulated but the magnitude of deformation is underestimated. Theinput strength for the hanging wall was lowered to study the impact of hanging wall strength onfootwall damage development. It is shown that when the footwall strength is kept constant, whilelowering the hanging wall strength, the extent of damage and magnitude of displacements in thefootwall increases. From these observations it is argued that the hanging wall and footwall cannotbe studied independently for the Kiirunavaara mine since the cave rock zone significantly affectsthe damage development in both walls.

Place, publisher, year, edition, pages
MDPI , 2017. Vol. 7, no 7, 109
National Category
Mineral and Mine Engineering Other Civil Engineering
Research subject
Mining and Rock Engineering
Identifiers
URN: urn:nbn:se:ltu:diva-64484DOI: 10.3390/min7070109ISI: 000407363800003Scopus ID: 2-s2.0-85021436574OAI: oai:DiVA.org:ltu-64484DiVA: diva2:1114912
Note

Validerad;2017;Nivå 2;2017-07-06 (andbra)

Available from: 2017-06-26 Created: 2017-06-26 Last updated: 2017-11-24Bibliographically approved
In thesis
1. Footwall stability in SLC mining
Open this publication in new window or tab >>Footwall stability in SLC mining
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis is based on a case study of the Kiirunavaara sublevel cave (SLC) mine. It focuses on footwall stability and damage development in the mining infrastructure on mine scale. Damage to the infrastructure is mappable for the full height of the footwall by access through decommissioned infrastructure associated with earlier mining stages. Damages range from pure structurally controlled failures (wedge failures) in the upper part of the footwall to fracture growth through intact rock combined with micro‑seismic emissions at the active mining depth.

The thesis addresses four distinct research questions;

(i) What are the predominant failure mechanisms for the Kiirunavaara footwall?

(ii) What is the role of confinement on the damage development in the footwall?

(iii) How does the SLC relate to the footwall damage development?

(iv) How can infrastructure damage associated to the future mining be estimated using currently available data?

Two sets of calibrated numerical models were used to study the damage evolution processes using damage mapping data as the main calibration parameter. Validation of the models was achieved by correlation of model output to micro-seismic locations. The modelling and damage mapping results were used as the basis for the development of a simple prognosis tool for estimating the ultimate extent of infrastructure damage associated to the mining advance for future mining steps.

A literature review on slope failure modes, large scale failures in cave mining and failure tracking using micro-seismic locations is included to provide background and definitions. The literature describes principal failure modes as well as mechanism combinations such as structurally controlled failures initiated by deep seated rock mass failures or relaxation. Cases are presented where previously stable structures become destabilised by cave advance and examples where micro‑seismic recordings were used to track deformations and the initiation and growth of newly formed fractures.

The Kiirunavaara SLC mine is presented in detail as the main case study of the work. The mine has been in operation since the early 20th century with a transition to underground operation over 50 years ago. The extent of the orebody is 4 km in length with an average width of 80-90 m, the termination at depth has yet to be determined. The ore has an average dip of 60˚ east and a dip-along-strike to the north. Both the footwall and hangingwall rock masses are considered hard and competent with UCS values for the footwall ranging from ca. 130 MPa to extreme cases of 600 MPa. The ore is mined in production blocks about 400 m wide (along strike), Mining of the northernmost blocks, situated in the Lake ore, did not start as open pit operations but has been accessed from the underground via SLC only.

The instabilities in the footwall has been addressed by several research studies in the past, with the predominant failure mechanisms in different studies being suggested as large scale tensile failure, complex wedge failure, or rotational shear failure, i.e., some type of principal slope failure.

In this work, conceptual numerical models in UDEC were calibrated to fit underground damage mapping data by tracking numerical shear strain concentrations. The conceptual models suggested rock mass damage without the indications of development of large scale slope failure mechanisms such as shear bands. Mine scale PFC models were calibrated with respect to the rock mass strength parameters derived by the conceptual UDEC models and used to study rock mass fracturing in the absence of large scale failure. It is shown that damage to the rock mass occurs mainly close to the active mining in a seismically active zone. This is suggested to weaken and soften the rock mass to allow the development of infrastructure damage in this volume to occur as the rock mass relaxes when entering the stress shadow of the SLC as mining progresses.

The damage to the rock mass at the production depth is argued, based on seismic records and a parametric study in UDEC, to constitute of large quantities of local shear failures coalescing to appear as a large scale step-path or rotational shear failure in mapping records. The extent of the associated infrastructure damage is predicated to be limited by the extent of the damaged rock mass zone. A simple bi-linear equation is suggested using ore-width and mining depth as input to estimate the ultimate extent of the damaged zone for each mining stage and thus the limit of later infrastructure damage development.

The thesis is concluded with recommendations for future work and potential for continued research.

Abstract [sv]

Denna avhandling baseras på en fallstudie av skivrasgruvan Kiirunavaara. Fokus ligger på liggväggstabilitet och skadeutveckling på gruvans infrastruktur i gruvskala. Infrastrukturskador kan karteras längs med hela liggväggens höjd där tillgång till bergmassan ges via urdrifttagna ortar och ramper drivna i samband med tidigare brytningssteg. Dokumenterade skador varierar med djupet – från strukturstyrda brott i den övre delen av liggväggen till ny sprickbildning genom intakt berg kombinerat med mikro-seismik vid nuvarande brytningsdjup.

Fyra distinkta forskningsfrågor avhandlas;

(i) Vilka är de dominerande brottsmekanismerna i Kiirunavaaras liggvägg?

(ii) Vilken roll spelar inspänning för brottsutvecklingen i liggväggen?

(iii) På vilket sätt relateras skivrasbrytningen till brottsutvecklingen?

(iv) Hur kan skador på gruvans infrastruktur kopplat till framtida brytningssteg uppskattas med data tillgängliga idag?

Två omgångar med kalibrerade numeriska modeller togs fram för att studera skadeutvecklingen i liggväggen med skadekarteringsdata som primär kalibreringsparameter. Validering av modellerna uppnåddes genom att studera samstämmigheten mellan modellresultaten och lokaliseringen av mikro-seismiska händelser. Modellresultaten och skadekarteringsdatabasen användes som grund för att utveckla ett enkelt prognosverktyg för att uppskatta den slutgiltiga utbredningen av infrastrukturskador direkt associerade med gruvbrytningen för framtida brytningssteg.

En litteraturstudie av släntbrott, storkskaliga brott i samband med rasbrytning samt brottsövervakning med mikro-seismik är inkluderad som bakgrund och för att definiera terminologier som används genom avhandlingen. Literaturstudien beskriver principiella brottsmekanismer samt kombinationer av mekanismer såsom strukturstyrda brott pådrivna av djupt belägna bergmassebrott eller minskad inspänning. Fallstudier presenteras där tidigare stabila strukturer destabiliseras av rasbrytningens framskridande och exempel där mikro-seismikdata använts för att följa deformationer samt initiering och tillväxt av nya sprickor i intakt berg och bergmassa.

Kiirunavaaragruvan presenteras i detalj som den huvudsakliga fallstudien för arbetet. Gruvan har varit aktiv sedan tidigt 1900-tal med övergång till underjordsbrytning för över 50 år sedan. Malmkroppens utbredning är 4 km längs strykningen med en genomsnittlig vidd av 80-90 m, och malmkroppens fortsättning mot djupet är öppen. Malmen har en genomsnittlig stupning av 60 grader öst med en fältstupning mot norr. Bergmassan i både liggvägg och hängvägg anses vara hård och kompetent med UCS värden för liggväggen mellan ca. 130 MPa till extrema fall av 600 MPa. Malmen bryts i produktionsblock med ca 400 m bredd (längs malmens strykning). Brytning av de nordligaste blocken, belägna i Sjömalmen, har inte skett i dagbrott utan har utförts enbart via skivrasbrytning.

Instabiliteten i liggväggen har avhandlats i ett flertal tidigare studier. De dominerande brottsmekanismerna har föreslagits i tidigare arbeten som storskaligt dragbrott, komplext kilbrott eller cirkulärt skjuvbrott d.v.s. någon typ av principiellt släntbrott.

I arbetet för denna avhandling kalibrerades konceptuella numeriska modeller i UDEC mot skadekarteringsdata från liggvägens underjord, med avseende på koncentrationer av skjuvtöjningar. De konceptuella modellerna visade på bergmasseskador utan indikationer på storskaligt släntbrott, exempelvis koncentrationer av numeriska skjuvband. PFC-modeller i gruvskala kalibrerades gentemot bergmasseparametrarna från de konceptuella studierna i UDEC för att direkt studera upprickningen av bergmassan i frånvaro av storskaliga brottsindikationer. Modellerna visade på att skador i bergmassan främst uppkommer nära brytningsområdet i en seismiskt aktiv zon. Detta föreslås försvaga och mjukgöra bergmassan vilket i sin tur leder till utveklingen av infrastrukturskador i den skadade volymen när berget avlastas då området hamnar i spänningsskugga från skivraset.

Ovanstående studier visar att skadorna som uppkommer i bergmassan, baserat på de konceptuella UDEC-modellerna och mikro-seismiska data, består av ett stort antal lokala skjuvbrott vilka samverkar till att framstå som ett storskaligt trappstegsbrott eller cirkulärt skjuvbrott i skadekarteringsdatat. Utbredningen av de relaterade infrastrukturskadorna förutspås begränsas av utbredningen av bergmasseskadorna uppkomna vid bryningen. Ett enkelt bi-linjär samband föreslås vilket använder malmbredd och brytningsdjup för att uppskatta den slutgiltiga utbredningen av skadezonen i bergmassan för varje brytningssteg, och i förlängningen begräsningen av senare uppkommande infrastrukturskador.

Avhandlingen avslutas med rekommendationer för fortsatt arbete samt framtida forskningspotential.

Place, publisher, year, edition, pages
Luleå: Luleå tekniska universitet, 2017
Series
Doctoral thesis / Luleå University of Technology 1 jan 1997 → …, ISSN 1402-1544
National Category
Other Civil Engineering
Research subject
Mining and Rock Engineering
Identifiers
urn:nbn:se:ltu:diva-65420 (URN)978-91-7583-949-3 (ISBN)978-91-7583-950-9 (ISBN)
Public defence
2017-10-27, F1031, LTU, Luleå, 10:00 (English)
Opponent
Supervisors
Available from: 2017-08-30 Created: 2017-08-30 Last updated: 2017-11-24Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopushttp://www.mdpi.com/2075-163X/7/7/109

Authority records BETA

Svartsjaern, MikaelSaiang, David

Search in DiVA

By author/editor
Svartsjaern, MikaelSaiang, David
By organisation
Mining and Geotechnical Engineering
In the same journal
Minerals
Mineral and Mine EngineeringOther Civil Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 198 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf