Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A Model-based Prognostic Approach to Predict Remaining Useful Life of Components
Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Operation, Maintenance and Acoustics.
Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Operation, Maintenance and Acoustics.
Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Operation, Maintenance and Acoustics.
2016 (English)In: Proceedings of 1st International Conference on Maintenance Engineering, IncoME-I, 2016 / [ed] Jyoti K. Sinha, Akilu Yunusa-Kaltungo, Wolfgang Hahn, 2016, ME2016_1147Conference paper, Oral presentation with published abstract (Refereed)
Abstract [en]

One of the major problems in the industry is the extension of the useful life of high-performance systems. Proper maintenance plays an important role by extending the useful life, reducing the lifecycle costs and improving the reliability and availability. Health management using a proper condition-based maintenance (CBM) deployment is a worldwide accepted strategy and has grown very popular in many industries over the past decades. A case of CBM is when the maintenance decision is taken based on a forecast of the asset state. This strategy is called predictive maintenance or prognostic health management (PHM). PHM is an engineering discipline that aims to maintain the system behaviour and function, and assure the mission success, safety and effectiveness. This strategy is relevant in environments where the prediction of a failure and the prevention and mitigation of its consequences increase the profit and safety of the facilities concerned. Prognosis is the most critical part of this process and is nowadays recognized as a key feature in maintenance strategies since estimation of the remaining useful life (RUL) is essential.

PHM can provide a state assessment of the future health of systems or components, e.g. when a degraded state has been found. The aim of using PHM is to estimate how long it will take before the equipment will reach a failure threshold, in future operating conditions and future environmental conditions.

The aim of the paper is to improve the estimation of bearing RUL by dynamically updating the SKF L10 bearing life length calculation. Using a physics-based prognostic approach, the behaviour of a roller in a paper machine was simulated using the finite element method (FEM). A transfer function representing the relation between bearing acceleration and bearing forces was generated and used to convert the acceleration signal into an estimation of the dynamically changing bearing force. The estimated force is then used as input to the bearing life length calculation generating an updated L10 calculation for each time step. 

Place, publisher, year, edition, pages
2016. ME2016_1147
Keyword [en]
Prognostics, Degradation, FEM, Modelling, Particle Filter, CBM, RUL, SKF L10
National Category
Engineering and Technology Other Civil Engineering
Research subject
Operation and Maintenance
Identifiers
URN: urn:nbn:se:ltu:diva-66625OAI: oai:DiVA.org:ltu-66625DiVA: diva2:1158054
Conference
1st International Conference on Maintenance Engineering, IncoME-I, The University of Manchester, UK, August 30-31, 2016
Projects
SKF-UTC
Available from: 2017-11-17 Created: 2017-11-17 Last updated: 2017-11-24Bibliographically approved

Open Access in DiVA

No full text

Other links

http://www.mace.manchester.ac.uk/our-research/seminars/income/

Search in DiVA

By author/editor
Mishra, MadhavRantatalo, MattiOdelius, Johan
By organisation
Operation, Maintenance and Acoustics
Engineering and TechnologyOther Civil Engineering

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 118 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf