Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Smart Buildings as Cyber-Physical Systems:Data-Driven Predictive Control Strategies for Energy Efficiency
Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Computer Science. NEC Laboratories Europe.
Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Computer Science.ORCID iD: 0000-0002-8681-9572
2018 (English)In: Renewable & sustainable energy reviews, ISSN 1364-0321, E-ISSN 1879-0690, Vol. 90, p. 742-756Article in journal (Refereed) Published
Abstract [en]

Due to its significant contribution to global energy usage and the associated greenhouse gas emissions, existing buildingstock’s energy efficiency must improve. Predictive building control promises to contribute to that by increasing theefficiency of building operations. Predictive control complements other means to increase performance such as refurbishmentsas well as modernizations of systems. This survey reviews recent works and contextualizes these with thecurrent state of the art of interrelated topics in data handling, building automation, distributed control, and semantics.The comprehensive overview leads to seven research questions guiding future research directions.

Place, publisher, year, edition, pages
Elsevier, 2018. Vol. 90, p. 742-756
Keywords [en]
Energy Efficiency, Predictive Control, Cyber-Physical System, Existing Buildings
National Category
Computer Systems Computer and Information Sciences
Research subject
Pervasive Mobile Computing
Identifiers
URN: urn:nbn:se:ltu:diva-67706DOI: 10.1016/j.rser.2018.04.013ISI: 000434917700050Scopus ID: 2-s2.0-85045248317OAI: oai:DiVA.org:ltu-67706DiVA, id: diva2:1184256
Note

Validerad;2018;Nivå 2;2018-04-26 (andbra)

Available from: 2018-02-20 Created: 2018-02-20 Last updated: 2025-02-18Bibliographically approved
In thesis
1. EVOX-CPS: A Methodology For Data-Driven Optimization Of Building Operation
Open this publication in new window or tab >>EVOX-CPS: A Methodology For Data-Driven Optimization Of Building Operation
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Existing building stock’s energy efficiency must improve due to its significant proportion of the global energy consumption mix. Predictive building control promises to increase the efficiency of buildings during their operational phase and thus lead to a reduction of the lion’s share of buildings’ lifetime energy consumption. Predictive control complements other means to increase performance, such as refurbishments as well as modernization of systems.

This thesis contributes EVOX-CPS, a holistic methodology to develop data-driven predictive control for (existing) buildings and deploy the control in day-to-day use. EVOX-CPS evolves buildings into Cyber-Physical Systems and addresses the development of data-driven predictive control using computational methods. The thesis’ focus rests on accounting for the situation of existing buildings - which vary greatly regarding their physical characteristics, usage patterns, system installation, and instrumentation levels. The methodology addresses the aspect of building stock variety with its capability to flexibly adapt to different buildings’ characteristics, e.g., by supporting the integration of varying levels of pre-existing building instrumentation. Furthermore, EVOX-CPS supports using different data mining, regression, or control techniques (i) to strengthen the support for a variety of buildings, and (ii) to cater to researchers’ and practitioners’ differing skills, experiences, or preferences concerning different data analysis techniques. Through its flexibility, the methodology addresses a vast potential installation base and lowers the barriers for adoption in day-to-day use, e.g., by being able to leverage prior investments in building instrumentation and supporting different data-analysis techniques. At the same time, EVOX-CPS provides researchers and practitioners with comprehensive guidance relevant to their daily work. Besides, EVOX-CPS supports addressing a building’s known limitations in the daily operation, e.g., uncomfortable indoor conditions.

The experimentation in two real buildings validates the effectiveness of EVOX-CPS’ data-driven control with high reliability due to prolonged experimentation periods combined with applying energy normalization and inferential statistics. The experiments during routine heating system operation establish high confidence in the recorded effect sizes: the improvements in operational efficiency are profound and statistically significant. More specifically, the experiments of controlling the grass heating system of the soccer stadium Commerzbank Arena, Frankfurt, Germany, in two winters saved up to 66% (2014/2015) and 85% (2015/2016) of energy consumption. Extrapolation to an average heating season leads to expected savings of 775 MWh (148 t of CO2 emissions) and 1 GWh (197 t CO2), respectively. The experiments also show that EVOX-CPS allowed alleviating the known operational limitation of heating supply shortages which required nightly preheating in the stadium’s standard operating procedures. In another set of experiments, we applied the methodology to control the heating system of the Sierra Elvira School in Granada, Spain. The experimentation occurred during the regular class hours of 43 school days in winter 2015/2016. A first experiment demonstrated the possibility to lower consumption by one-third while maintaining indoor comfort. Another experiment raised average indoor temperatures by 2K with 5% additional energy consumption. Again, that illustrates EVOX-CPS’ capability to address a building’s known operational issues.

Place, publisher, year, edition, pages
Luleå: Luleå University of Technology, 2018
Series
Doctoral thesis / Luleå University of Technology 1 jan 1997 → …, ISSN 1402-1544
Keywords
Cyber-Physical Systems, Existing Buildings, Predictive Control, Sustainable Development, Energy Efficiency
National Category
Computer Sciences Computer and Information Sciences
Research subject
Pervasive Mobile Computing
Identifiers
urn:nbn:se:ltu:diva-67780 (URN)978-91-7790-059-7 (ISBN)978-91-7790-060-3 (ISBN)
Public defence
2018-04-27, Hörsal-A, Campus Skellefteå, Skellefteå, 08:30 (English)
Opponent
Supervisors
Available from: 2018-02-27 Created: 2018-02-26 Last updated: 2025-02-18Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Schmidt, MischaÅhlund, Christer

Search in DiVA

By author/editor
Schmidt, MischaÅhlund, Christer
By organisation
Computer Science
In the same journal
Renewable & sustainable energy reviews
Computer SystemsComputer and Information Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 1026 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf