Planned maintenance
A system upgrade is planned for 10/12-2024, at 12:00-13:00. During this time DiVA will be unavailable.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Hardy-type inequalities in fractional h-discrete calculus
Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science. UiT The Artic University of Norway, Narvik, Norway.
L. N. Gumilyev Eurasian National University, Astana, Kazakhstan.
Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science. L. N. Gumilyev Eurasian National University, Astana, Kazakhstan.
2018 (English)In: Journal of inequalities and applications, ISSN 1025-5834, E-ISSN 1029-242X, no 1, article id 73Article in journal (Refereed) Published
Abstract [en]

The first power weighted version of Hardy’s inequality can be rewritten as∫∞0(xα−1∫x01tαf(t)dt)pdx≤[pp−α−1]p∫∞0fp(x)dx,f≥0,p≥1,α<p−1,where the constant C=[pp−α−1]p is sharp. This inequality holds in the reversed direction when 0≤p<1. In this paper we prove and discuss some discrete analogues of Hardy-type inequalities in fractional h-discrete calculus. Moreover, we prove that the corresponding constants are sharp.

Place, publisher, year, edition, pages
Springer, 2018. no 1, article id 73
Keywords [en]
Inequality, Integral operator, h-calculus, h-integral, Discrete Fractional Calculus
National Category
Mathematical Analysis
Research subject
Mathematics
Identifiers
URN: urn:nbn:se:ltu:diva-68169DOI: 10.1186/s13660-018-1662-6ISI: 000429238300001PubMedID: 29628749Scopus ID: 2-s2.0-85045115925OAI: oai:DiVA.org:ltu-68169DiVA, id: diva2:1195193
Note

Validerad;2018;Nivå 2;2018-04-04 (rokbeg)

Available from: 2018-04-04 Created: 2018-04-04 Last updated: 2022-10-14Bibliographically approved
In thesis
1. Hardy-type inequalities in quantum calculus
Open this publication in new window or tab >>Hardy-type inequalities in quantum calculus
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Alternative title[sv]
Hardy-typ olikheter i q-analys
Place, publisher, year, edition, pages
Luleå: Luleå University of Technology, 2018
Series
Doctoral thesis / Luleå University of Technology 1 jan 1997 → …, ISSN 1402-1544
National Category
Mathematics Mathematical Analysis
Research subject
Mathematics
Identifiers
urn:nbn:se:ltu:diva-71319 (URN)978-91-7790-240-9 (ISBN)978-91-7790-241-6 (ISBN)
Public defence
2018-12-10, E246, Luleå, 10:00 (English)
Opponent
Supervisors
Available from: 2018-10-24 Created: 2018-10-24 Last updated: 2019-03-04Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Persson, Lars-ErikShaimardan, Serikbol

Search in DiVA

By author/editor
Persson, Lars-ErikShaimardan, Serikbol
By organisation
Mathematical Science
In the same journal
Journal of inequalities and applications
Mathematical Analysis

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 51 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf