Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Data clustering and imputing using a two-level multi-objective genetic algorithms (GA): A case study of cost data for tunnel fans
Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Operation, Maintenance and Acoustics.ORCID iD: 0000-0002-1967-6604
Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Operation, Maintenance and Acoustics.ORCID iD: 0000-0001-5620-5265
Department of Industrial Engineering, School of Mechanical Engineering, Dongguan University of Technology, 523808 Dongguan, China.ORCID iD: 0000-0001-5317-0087
2018 (English)In: Journal of experimental and theoretical artificial intelligence (Print), ISSN 0952-813X, E-ISSN 1362-3079Article in journal (Refereed) Submitted
Abstract [en]

Data clustering captures natural structures in data consisting of a set of objects and groups similar data together. The derived clusters can be used for scale analysis and to posit missing data values in objects, as missing data have a negative effect on the computational validity of models. This study develops a new two-level multi-objective genetic algorithm (GA) to optimize clustering in order to redact and impute missing cost data for fans used in road tunnels by the Swedish Transport Administration (Trafikverket). The first level uses a multi-objective GA based on fuzzy c-means to cluster cost data objects based on three main indices. The first is cluster centre outliers; the second is the compactness and separation ( ) of the data points and cluster centres; the third is the intensity of data points belonging to the derived clusters. Our clustering model is validated using k-means clustering. The second level uses a multi-objective GA to impute the missing cost redacted data in size using a valid data period. The optimal population has a low , 0.1%, and a high intensity, 99%. It has three cluster centres, with the highest data reduction of 27%. These three cluster centres have a suitable geometry, so the cost data can be partitioned into relevant contents to be redacted for imputing. Our model show better clustering detection and evaluation compared with k-means. The amount of missing data for the two cost objects are: labour 57%, materials 81%. The second level shows highly correlated data (R-squared 0.99) after imputing the missing data objects. Therefore, multi-objective GA can cluster and impute data to derive complete data that can be used for better estimation of forecasting.

Place, publisher, year, edition, pages
Taylor & Francis, 2018.
National Category
Reliability and Maintenance Other Civil Engineering
Research subject
Operation and Maintenance
Identifiers
URN: urn:nbn:se:ltu:diva-68287OAI: oai:DiVA.org:ltu-68287DiVA, id: diva2:1196699
Available from: 2018-04-10 Created: 2018-04-10 Last updated: 2018-04-11

Open Access in DiVA

No full text in DiVA

Search in DiVA

By author/editor
Al-Douri, YamurHamodi, HussanZhang, Liangwei
By organisation
Operation, Maintenance and Acoustics
In the same journal
Journal of experimental and theoretical artificial intelligence (Print)
Reliability and MaintenanceOther Civil Engineering

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 26 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf