Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Solar wind dynamics around a comet: A 2D semi-analytical kinetic model
Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Space Technology. Swedish Institute of Space Physics, Kiruna.ORCID iD: 0000-0003-0177-510X
LERMA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Université, UPMC Univ. Paris.
IMCCE, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Université, UPMC Univ. Paris.
LPC2E, CNRS, Orléans.
Show others and affiliations
2018 (English)In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 620, article id A35Article in journal (Refereed) Published
Abstract [en]

Aims.We aim at analytically modelling the solar wind proton trajectories during their interaction with a partially ionised cometaryatmosphere, not in terms of bulk properties of the flow but in terms of single particle dynamics.Methods.We first derive a generalised gyromotion, in which the electric field is reduced to its motional component. Steady-stateis assumed, and simplified models of the cometary density and of the electron fluid are used to express the force experienced byindividual solar wind protons during the interaction.Results.A three-dimensional (3D) analytical expression of the gyration of two interacting plasma beams is obtained. Applying it to acomet case, the force on protons is always perpendicular to their velocity and has an amplitude proportional to 1/r2. The solar winddeflection is obtained at any point in space. The resulting picture presents a caustic of intersecting trajectories, and a circular regionis found that is completely free of particles. The particles do not lose any kinetic energy and this absence of deceleration, togetherwith the solar wind deflection pattern and the presence of a solar wind ion cavity, is in good agreement with the general results of theRosettamission.Conclusions.The qualitative match between the model and thein situdata highlights how dominant the motional electric field isthroughout most of the interaction region for the solar wind proton dynamics. The model provides a simple general kinetic descriptionof how momentum is transferred between these two collisionless plasmas. It also shows the potential of this semi-analytical modelfor a systematic quantitative comparison to the data.

Place, publisher, year, edition, pages
EDP Sciences, 2018. Vol. 620, article id A35
National Category
Fusion, Plasma and Space Physics Aerospace Engineering
Research subject
Atmospheric science
Identifiers
URN: urn:nbn:se:ltu:diva-68781DOI: 10.1051/0004-6361/201832736ISI: 000451249600003Scopus ID: 2-s2.0-85051991586OAI: oai:DiVA.org:ltu-68781DiVA, id: diva2:1206752
Note

Validerad;2018;Nivå 2;2018-12-05 (svasva)

Available from: 2018-05-18 Created: 2018-05-18 Last updated: 2023-09-04Bibliographically approved
In thesis
1. Solar Wind Dynamics within The Atmosphere of comet 67P/Churyumov-Gerasimenko
Open this publication in new window or tab >>Solar Wind Dynamics within The Atmosphere of comet 67P/Churyumov-Gerasimenko
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

In this thesis, we explore the dynamics of the solar wind as it perme-ates and flows through a tenuous cometary atmosphere, with a focuson the interaction observed at comet 67P/Churyumov–Gerasimenko.

Seven comets had already been visited by nine different probes when the European spacecraft Rosetta reached comet Churyumov–Gerasimenko in August 2014. The mission was however the first to orbit its host comet, which it did for a total duration of more than two years, corre-sponding to a large part of the comet’s orbit around the Sun. This en-abled to study how the dynamics of the plasma environment evolvedas the comet itself was transformed from one of the smallest obstaclesto the solar wind in the Solar System when far away from the Sun, toa well-established magnetosphere at perihelion.

Most of our efforts tackle the early part of this transformation, when the creation of new-born cometary ions starts to induce significant disturbances to the incident flow. During this stage, a kinetic descrip-tion of the interaction is necessary, as the system of interest cannot be reduced to a hydrodynamic problem. This contrasts with the situation closer to the Sun, where a fluid treatment can be used, at Churyumov–Gerasimenko as well as at previously visited comets.

Rosetta was not a mission dedicated to plasma studies, however. It directly translates into a limited spatial coverage of the cometary plasma environment, which by its nature extends over several spatial scales. An approach solely based on the analysis of in-situ data cannot properly address the major questions on the nature and physics of the plasma environment of Churyumov–Gerasimenko. This thesis there-fore largely exploits the experimental–analytical–numerical triad of approaches. In Chapters 3 and 4 we propose simple models of the ion dynamics and of the cometary plasma environment, and these are tested against experimental and numerical data. Used together,they give a global description of the solar wind ion dynamics through the cometary atmosphere, that we explore in the 2-dimensional and 3-dimensional cases (Chapter 5). In Chapter 6, we propose a view onthe interaction and its fluid aspects when closer to the Sun.

Abstract [sv]

I  denna  avhandling  undersöks  solvindens  dynamik  när  den  flödar genom  en  tunn  kometatmosfär,  med  fokus  på  den  interaktion  somobserverats vid kometen 67P/Churyumov-Gerasimenko.

När  Rosetta  nådde  from  till  komet  67P/Churyumov–Gerasimenko  i augusti 2014 hade redan sju olika rymdfarkoster besökt nio olika ko- meter.  Rosetta  var  dock  den  första  missionen  som  cirklade  runt  en komet och följde den sedan i dess bana i totalt mer än två år. Detta motsvarade en signifikant del av hela kometens bana runt solen. Det- ta gjorde det möjligt att studera plasmats dynamiska utveckling un- der en period när kometen utvecklades från ett av de minsta hindren solvinden möter i solsystemet, när kometen är långt från solen, till enfullt utvecklad magnetosfär nära perihelion.

Avhandlingen behandlar främst den tidiga delen av denna utveckling, när nyligen joniserade molekyler från kometatmosfären börjar ge en signifikant störning i solvindens flöde. Under dessa förhållanden är en kinetisk beskrivning av växelverkan mellan solvinden och kome- tatmosfären  nödvändig.  Systemet  vi  studerar  kan  inte  reduceras  till ett hydrodynamiskt problem. Detta till skillnad från situationen när kometen är närmare solen, då växelverkan kan beskrivas med fluid- teori, för både Churyumov–Gerasimenko och de tidigare undersöktakometerna.

Rosetta var inte en mission främst ägnad åt plasma-studier. Detta med- förde begränsad rumslig täckning av de plasma-processer som äger rum, vilka äger rum över flera olika rumsskalor. Att förstå solvindens växleverkan  med  kometatmosfären  enbart  med  enpunktsmätningar låter sig därför inte göras. I detta arbete används därför en kombina- tion av experimentella data, analytiska beskrivningar och numeriska beräkningar. I kapitel 3 och 4 föreslår vi enkla modeller för att beskri- va jondynamiken och kometens plasmamiljö. Dessa testas sedan mot observationer och numeriska modeller. Tillsammans ger de en global beskrivning  av  solvindens  dynamik  när  den  flödar  genom  kometat- mosfären,  vilket  utforskas  i  både  2 och  3 dimensioner  (kapitel  5).  I kapitel 6 utforskar vi interaktionen som sker när kometen är närmaresolen, och hur den nu i högre grad kan beskrivas som en fluid.

Place, publisher, year, edition, pages
Luleå: Luleå University of Technology, 2018
Series
Doctoral thesis / Luleå University of Technology 1 jan 1997 → …, ISSN 1402-1544
National Category
Fusion, Plasma and Space Physics Aerospace Engineering
Research subject
Space Technology
Identifiers
urn:nbn:se:ltu:diva-68785 (URN)978-91-7790-156-3 (ISBN)978-91-7790-157-0 (ISBN)
Public defence
2018-10-12, Aulan, IRF, Rymdcampus, Kiruna, 09:00 (English)
Opponent
Supervisors
Available from: 2018-05-21 Created: 2018-05-18 Last updated: 2023-09-04Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Behar, EtienneNilsson, Hans

Search in DiVA

By author/editor
Behar, EtienneNilsson, Hans
By organisation
Space Technology
In the same journal
Astronomy and Astrophysics
Fusion, Plasma and Space PhysicsAerospace Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 409 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf