Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Represensibility of cones of monotone functions in weighted Lebesgue spaces and extrapolation of operators on these cones
P. G. Demidov Yaroslavl, State University.
Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.ORCID iD: 0000-0002-9584-4083
2018 (English)In: St. Petersburg Mathematical Journal, ISSN 1061-0022, E-ISSN 1547-7371, Vol. 29, no 4, p. 545-574Article in journal (Refereed) Published
Abstract [en]

It is shown that a sublinear operator is bounded on the cone of monotone functions if and only if a certain new operator related to the one mentioned above is bounded on a certain ideal space defined constructively. This construction is used to provide new extrapolation theorems for operators on the cone in weighted Lebesgue spaces.

Place, publisher, year, edition, pages
American Mathematical Society (AMS), 2018. Vol. 29, no 4, p. 545-574
National Category
Mathematical Analysis
Research subject
Mathematics
Identifiers
URN: urn:nbn:se:ltu:diva-69491DOI: 10.1090/spmj/1506ISI: 000434347800001Scopus ID: 2-s2.0-85048032506OAI: oai:DiVA.org:ltu-69491DiVA, id: diva2:1218059
Note

Validerad;2018;Nivå 2;2018-06-14 (andbra)

Available from: 2018-06-14 Created: 2018-06-14 Last updated: 2018-06-28Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Maligranda, Lech

Search in DiVA

By author/editor
Maligranda, Lech
By organisation
Mathematical Science
In the same journal
St. Petersburg Mathematical Journal
Mathematical Analysis

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 51 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf