CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt828",{id:"formSmash:upper:j_idt828",widgetVar:"widget_formSmash_upper_j_idt828",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt829_j_idt831",{id:"formSmash:upper:j_idt829:j_idt831",widgetVar:"widget_formSmash_upper_j_idt829_j_idt831",target:"formSmash:upper:j_idt829:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Distributed multi-agent Gaussian regression via finite-dimensional approximationsPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
2018 (English)In: IEEE Transaction on Pattern Analysis and Machine Intelligence, ISSN 0162-8828, E-ISSN 1939-3539Article in journal (Refereed) Epub ahead of print
##### Abstract [en]

##### Place, publisher, year, edition, pages

2018.
##### National Category

Control Engineering
##### Research subject

Control Engineering
##### Identifiers

URN: urn:nbn:se:ltu:diva-69896DOI: 10.1109/TPAMI.2018.2836422OAI: oai:DiVA.org:ltu-69896DiVA, id: diva2:1224170
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt1118",{id:"formSmash:j_idt1118",widgetVar:"widget_formSmash_j_idt1118",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt1124",{id:"formSmash:j_idt1124",widgetVar:"widget_formSmash_j_idt1124",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt1130",{id:"formSmash:j_idt1130",widgetVar:"widget_formSmash_j_idt1130",multiple:true}); Available from: 2018-06-26 Created: 2018-06-26 Last updated: 2018-06-26

We consider the problem of distributedly estimating Gaussian processes in multi-agent frameworks. Each agent collects few measurements and aims to collaboratively reconstruct a common estimate based on all data. Agents are assumed with limited computational and communication capabilities and to gather <formula><tex>$M$</tex></formula>noisy measurements in total on input locations independently drawn from a known common probability density. The optimal solution would require agents to exchange all the <formula><tex>$M$</tex></formula>input locations and measurements and then invert an <formula><tex>$M\times M$</tex></formula> matrix, a non-scalable task. Differently, we propose two suboptimal approaches using the first <formula><tex>$E$</tex></formula> orthonormal eigenfunctions obtained from the KL expansion of the chosen kernel, where typically <formula><tex>$E\ll M$</tex></formula>. The benefits are that the computation and communication complexities scale with <formula><tex>$E$</tex></formula> and not with <formula><tex>$M$</tex></formula>, and computing the required statistics can be performed via standard average consensus algorithms. We obtain probabilistic non-asymptotic bounds that determine a priori the desired level of estimation accuracy, and new distributed strategies relying on SURE paradigms for tuning the regularization parameters and applicable to generic basis functions (thus not necessarily kernel eigenfunctions) and that can again be implemented via average consensus. The proposed estimators and bounds are finally tested on both synthetic and real field data. OAPA

doi
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1840",{id:"formSmash:j_idt1840",widgetVar:"widget_formSmash_j_idt1840",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1893",{id:"formSmash:lower:j_idt1893",widgetVar:"widget_formSmash_lower_j_idt1893",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1894_j_idt1896",{id:"formSmash:lower:j_idt1894:j_idt1896",widgetVar:"widget_formSmash_lower_j_idt1894_j_idt1896",target:"formSmash:lower:j_idt1894:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});