Planned maintenance
A system upgrade is planned for 10/12-2024, at 12:00-13:00. During this time DiVA will be unavailable.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Growth of interface cracks on consecutive fibers: on the same or on the opposite sides?
Luleå University of Technology, Department of Engineering Sciences and Mathematics, Material Science. Université de Lorraine, EEIGM, 6 Rue Bastien Lepage, F-54010 Nancy, France.ORCID iD: 0000-0002-9261-301x
Luleå University of Technology, Department of Engineering Sciences and Mathematics, Material Science.ORCID iD: 0000-0001-9649-8621
Université de Lorraine, EEIGM, 6 Rue Bastien Lepage, F-54010 Nancy, France.
2021 (English)In: 12th International Conference on Composite Science and Technology / [ed] Mauro Zarrelli, Michele Meo, Elsevier, 2021, p. 360-365Conference paper, Published paper (Refereed)
Abstract [en]

The growth of fiber/matrix interface cracks (debonds) locatedon consecutive fibers along the through-the-thickness (vertical)direction is studied in glass fiber-epoxy UD composites. Debonds couldappear, along the vertical direction, on the same or on opposite sides oftheir respective fibers. Determining which configuration is the mostenergetically favorable to debond growth is the objective of this paper.To this end, two different families of Representative Volume Elements(RVEs) are developed: the first implements the classic condition ofcoupling of the vertical displacements to model a unit cell repeating symmetrically along the vertical direction; the second uses a novel setof boundary conditions, proposed here by the authors, to represent a unitcell repeating anti-symmetrically along the vertical direction. The modelis analyzed in the context of Linear Elastic Fracture Mechanics (LEFM)and the Mode I and Mode II Energy Release Rate are evaluated toinvestigate crack growth. The calculation is performed using the VirtualCrack Closure Technique (VCCT) in the framework of the Finite ElementMethod (FEM). It is found that Mode I dominated propagation is favoredwhen debonds are located on the same sides of their respective fibers;while for larger (Mode II-dominated) debonds, Mode II ERR is higher whenthey lie on the opposite sides. No interaction effect is present when atleast two fully bonded fibers are located between the partially debonded ones.

Place, publisher, year, edition, pages
Elsevier, 2021. p. 360-365
Series
Materials Today: Proceedings, ISSN 2214-7853 ; 34, 1
Keywords [en]
Polymer Matrix Composite (PMC), Fracture mechanics, Debonding, Debond Interaction
National Category
Composite Science and Engineering
Research subject
Polymeric Composite Materials
Identifiers
URN: urn:nbn:se:ltu:diva-76255DOI: 10.1016/j.matpr.2020.06.410ISI: 000621112600060Scopus ID: 2-s2.0-85101897630OAI: oai:DiVA.org:ltu-76255DiVA, id: diva2:1357993
Conference
12th International Conference on Composite Science and Technology (ICCST 12), 8-10 May, 2019, Sorrento, Italy
Available from: 2019-10-05 Created: 2019-10-05 Last updated: 2021-06-17Bibliographically approved
In thesis
1. Influence of microstructure on debonding at the fiber/matrix interface in fiber-reinforced polymers under tensile loading
Open this publication in new window or tab >>Influence of microstructure on debonding at the fiber/matrix interface in fiber-reinforced polymers under tensile loading
2019 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

At the end of the second decade of the XXI century, the transportation industry at large faces several challenges that will shape its evolution in the next decade and beyond. The first such challenge is the increasing public awareness and governmental action on climate change, which are increasing the pressure on the industrial sectors responsible for the greatest share of emissions, the transportation industry being one of them, to reduce their environmental footprint. The second big challenge lies instead in the renewed push towards price reduction, due to increased competition (as for example, in the market for low-Earth orbit launchers, the entry of private entities) and innovative business models (like ride-sharing and ride-hailing in the automotive sector or low-cost carriers in civil aviation). A viable and effective technical solution strategy to these challenges is the reduction of vehicles’ structural mass, while keeping the payload mass constant. By reducing consumption, a reduced weight leads to reduced emissions in fossil-fuels powered vehicles and to increased autonomy in electrical ones. By reducing the quantity of materials required in structures, a weight reduction strategy favors in general a reduction of production costs and thus lower prices. Transportation is however a sector where safety is a paramount concern, and structures must satisfy strict requirements and validation procedures to guarantee their integrity and reliability during service life. This represents a significant constraint which limits the scope of the weight reduction approach. In the last twenty years, the development of a novel type of Fiber-Reinforced Polymer Composite (FRPC) laminates, called thin-ply laminates, proposes a solution to these competing requirements (weight with respect to structural integrity) by providing at the same time weight reduction and increased strength. Several experimental investigations have shown, in fact, that thin-ply laminates are capable of delaying, and even suppress, the onset of transverse cracking. Transverse cracks are a kind of sub-critical damage in FRPC laminates and occur early in the failure process, causing the degradation of elastic properties and favoring other, often more critical, modes of damage (delaminations, fiber breaks). Delay and suppression of transverse cracks were already linked, at the end of the 1970’s, to the use of thinner plies inside a laminate. However, thin-plies available today on the market are at least 10 times thinner than those studied in the 1970’s. This characteristic changes the length scale of the problem, from millimeters to micrometers. At the microscale, transverse cracks are formed by several fiber/matrix interface cracks (or debonds) coalescing together. Understanding the mechanisms of transverse cracking delay and suppression in thin-ply laminates requires detailed knowledge regarding onset of transverse cracking at the microscale, and thus the study of the mechanisms that favor or prevent debond initiation and growth. The main objective of the present work is to investigate the influence of the microstructure on debond growth along the fiber arc direction. To this end, models of 2-dimensional Representative Volume Elements (RVEs) of Uni-Directional (UD) composites and crossply laminates are developed. The Representative Volume Elements are characterized by different configurations of fibers and different damage states. Debond initiation is studied through the analysis of the distribution of stresses at the fiber/matrix interface in the absence of damage. Debond growth on the other hand is characterized using the approach of Linear Elastic Fracture Mechanics (LEFM), specifically through the evaluation of the Mode I, Mode II and total Energy Release Rate (ERR). Displacement and stress fields are evaluated by means of the Finite Element Method (FEM) using the commercial solver Abaqus. The components of the Energy Release Rate are then evaluated using the Virtual Crack Closure Technique (VCCT), implemented in a custom Python routine. The elastic solution of the debonding problem presents two different regimes: the open crack and the closed crack behaviour. In the latter, debond faces are in contact in a region of finite size at the debond tip; in the latter, the debond is everywhere open and no contact exists between the faces. In the open crack regime, it is known that stress and displacement fields at the debond tip present an oscillating singularity. A convergence analysis of the VCCT in the context of the FEM solution is thus required to guarantee the validity of results and represents the first step of the work presented in this thesis. It is found that the total ERR does not depend on the size of elements at the debond tip, while the values of Mode I and Mode II ERR depend on element size in the open crack or mixed mode case. It is furthermore shown that Mode I and Mode II ERR do not converge, i.e. their asymptotic behavior for decreasing element size is not bounded. Thus, error reduction between successive iterations cannot be used to validate the solution and comparison with another method is required. Results obtained with the Boundary Element Method (BEM), available in the literature, are selected to this end. Debond growth under remote tensile loading is then studied in Representative Volume Elements of: UD composites of varying thickness, measured in terms of number of rows of fibers, from extremely thin (one fiber row) to thick ones; cross-ply laminates with a central 90◦ ply of varying thickness, measured as well in terms of number of rows of fibers, from extremely thin (one fiber row) to thick ones; thick UD composites (modelled as infinite along the through-the-thickness direction). Different damage configurations are also considered, corresponding to different stages of transverse crack onset: non-interacting isolated debonds; interacting debonds distributed along the loading direction; debonds on consecutive fibers along the through-the-thickness direction. Among the most relevant results, it is found that neither the 90◦ ply thickness nor the 0◦ ply thickness influences debond ERR in cross-ply laminates, differently from what is observed for transverse cracks with the so-called ply-thickness and ply-block effects. On the other hand, debond interaction along the loading direction is shown to influence significantly the Energy Release Rate, but this interaction possesses a characteristic distance (in terms of number of undamaged fibers) that defines the region of influence between debonds. Finally, an estimation of debond size at initiation and of debond maximum size is proposed based on arguments from stress analysis (for initiation) and on Griffith’s criterion from LEFM (for propagation). For a debond in a cross-ply laminate, its maximum size is estimated to lie in the range 40◦ − 60◦ , which is in strong agreement with previous results from microscopic observations available in the literature.

Abstract [fr]

A la fin de la deuxi`eme d´ecennie du XXI si`ecle, l’industrie du transport fait face de nombreux d´efis qui d´etermineront son ´evolution dans la prochaine d´ecennie et au-del`a. Le premier d´efi est la sensibilisation croissante du grand public aux probl`emes environnementaux et, en cons´equence, l’intensification de l’action gouvernementale `a regard du changement climatique, fait qui d´etermine une mont´ee en pression sur tous les secteurs industriels qui sont grands ´emetteurs et dont lesquels le transport fait partie. Le deuxi`eme d´efi est repr´esent´e en revanche par la course `a la r´eduction des prix, dˆu `a une majeure concurrence (comme, par exemple, dans les secteurs des vecteurs spatiales avec l’entr´ee des acteurs priv´es dans le march´e) et `a nouveaux mod`eles commerciaux (comme le covoiturage dans l’industrie automobile ou les compagnies `a bas prix dans le transport a´erien). Une strat´egie simple mais efficace pour r´epondre `a ces d´efis est la r´eduction du poids des structures du v´ehicule, en maintenant constantes la capacit´e payante. Le premier effet de cette strat´egie est de r´eduire la consommation de carburant, fait qu’en revanche conduit `a une r´eduction des ´emissions dans les v´ehicules `a carburants fossiles et `a l’augmentation de l’autonomie des v´ehicules ´electriques. En outre, la r´eduction de la quantit´e des mat´eriaux utilis´ee dans les structures se traduit souvent en une r´eduction des coˆuts de fabrications et donc du prix pour l’utilisateur. D’autre cˆot´e le transport est un secteur dont l’attention `a la s´ecurit´e est prioritaire, avec des processus de certifications extrˆemement rigoureux. Cette exigence pose des contraintes consid´erables sur l’ampleur des interventions de r´eduction du poids des structures. Le d´eveloppement dans les derni`eres vingt ans d’un nouvel type de stratifi´e en polym`ere avec renfort en fibre, les stratifi´es thin-ply, propose une solution `a ce probl`eme en offrant des stratifies consid´erablement plus l´eg`eres avec, au mˆeme temps, des meilleures propri´et´es m´ecaniques. Nombreux essais ont en fait montr´e la capacit´e de ces stratifi´es de retarder et aussi empˆecher l’amor¸cage et la propagation des fissures transverses. Les fissures transverses repr´esentent un m´ecanisme de rupture `a l’´echelle des plis qui a lieu plutˆot tˆot dans le processus d’endommagement du stratifi´e et qui conduit `a la d´egradation des propri´et´es m´ecaniques du composite et favorise l’apparition des autres formes d’endommagement (d´elaminage, rupture des fibres) souvent plus critique pour l’int´egrit´e de la structure. Dans les ann´ees 1970, la capacit´e des stratifies composites de retarder l’amor¸cage des fissures transverses ´etait observ´ee et li´ee `a l’´epaisseur des plis. N´eanmoins, l’´epaisseur des thin-plies aujourd’hui sur le march´e est au moins 10 fois plus petit que celui des plis des ann´ees 1970. Ce fait se traduit par un changement d’´echelle du probl`eme, de millim`etres `a microm`etres. Au niveau microscopique, les fissures transxiii verses sont form´ees `a partir de nombreux d´ecollements (ou d´ecoh´esions) entre fibre et matrice connect´es entre eux. Une compr´ehension d´etaill´ee de m´ecanismes qui empˆechent les fissures transverses requiert la connaissance des ph´enom`enes d’amor¸cage des fissures transverse `a l’´echelle microm´ecanique et donc des conditions favorables `a l’amor¸cage et propagation des d´ecollements entre fibre et matrice. L’objectif principal de cette th`ese est d’´etudier l’effet de la microstructure sur l’amor¸cage et propagation de d´ecollements entre fibre et matrice. Dans ce but, des mod`eles de Volume El´ementaire Repr´esentatif (VER) des composites unidirectionnels et des stratifi´es crois´es sont d´evelopp´es, caract´eris´es par diff´erentes configurations des fibres et degr´e d’endommagement. L’amor¸cage du d´ecollement est analys´e par rapport `a la distribution des contraintes `a l’interface entre fibre et matrice. En revanche, la propagation du d´ecollement est ´etudi´ee avec l’approche de la M´ecanique Lin´eaire Elastique de la Rupture (MLER), et plus sp´ecifiquement avec l’´evaluation du taux de restitution d’´energie en Mode I et Mode II. Les champs de d´eplacement et contrainte sont calcul´es avec la M´ethode des ´el´ements finis (MEF) dans le logiciel Abaqus. La d´etermination des composants du taux de restitution d’´energie est effectu´ee avec la technique de fermeture virtuelle de fissure impl´ement´ee par l’auteur en langage Python. La solution ´elastique du probl`eme de d´ecollement entre fibre et matrice est caract´eris´ee par la pr´esence de deux r´egimes : celui de fissure ouverte et celui de fissure ferm´ee. Dans le deuxi`eme cas, il existe une zone proche de la pointe de fissure o`u les l`evres du d´ecollement sont en contact. Dans le premier cas, le d´ecollement est ouvert et il n’existe aucun contact entre les l`evres du d´ecollement. Dans le r´egime de fissure ouverte, les champs des d´eplacements et contraintes pr´esentent une singularit´e oscillatoire. Un ’´etude de convergence de la technique de fermeture virtuelle de fissure est donc requis et constitue le premier ´el´ement du travail de cette th`ese. Il est constat´e que le taux de restitution d’´energie total ne d´epend pas de la taille des ´el´ements proches de la pointe de fissure, alors que le taux en Mode I et Mode II pr´esent une d´ependance significative de la taille des ´el´ements dans le cas de fissure ouverte. Il est montr´e que le taux de restitution d’´energie en Mode I et Mode II ne converge pas, ce `a dire que le comportement asymptotique n’est pas limit´e. Par cons´equence, il n’est pas possible d’utiliser l’erreur entre it´erations successives comme mesure de la convergence de la solution et une comparaison est donc n´ecessaire avec des r´esultats obtenus avec une autre m´ethode. Le taux de restitution d’´energie calcul´e avec la m´ethode d’´el´ements de fronti`ere, disponible dans la litt´erature, est choisi comme r´ef´erence. Ensuite, la propagation de d´ecollement entre fibre et matrice est ´etudi´ee dans Volume El´ementaire Repr´esentative de : composites unidirectionnels avec ´epaisseur variable, mesur´e par le nombre des rang´ees des fibres, de ceux extrˆemement minces (une rang´ee des fibres) au plus ´epais ; stratifi´e crois´e avec un pli central `a 90◦ d’´epaisseur variable, mesur´e par le nombre des rang´ees des fibres, de ceux extrˆemement minces (une rang´ee des fibres) au plus ´epais ; composites unidirectionnels ´epais, mod´elis´es comme infinis `a travers l’´epaisseur. Configurations multiples de l’endommagement sont aussi examin´ees, qui correspondent `a diff´erentes ´etapes du processus d’amor¸cage des fissures transverses : d´ecollements isol´es ; d´ecollements interagissant distribu´es dans la direction d’application de la charge m´ecanique ; d´ecollements xiv localis´es sur fibres cons´ecutives `a travers l’´epaisseur. Entre les r´esultats plus importants, il est constat´e que ni l’´epaisseur du pli `a 90◦ ni l’´epaisseur du pli `a 0◦ influence le taux de restitution d’´energie du d´ecollement, diff´eremment de ce qu’a ´et´e observ´e pour les fissures transverses. En revanche, il est montr´e que le taux de restitution d’´energie est affect´e de mani`ere significative par l’interaction mutuelle entre d´ecollements dans la direction d’application de la charge et qu’il existe une distance caract´eristique (mesur´e par le nombre des fibres sans endommagement) d´eterminant la r´egion d’influence entre d´ecollements. Enfin, la taille du d´ecollement juste apr`es l’amor¸cage et la taille ultime du d´ecollement sont estim´ees `a partir de l’analyse de la distribution des contraintes `a l’interface entre fibre et matrice (pour l’amor¸cage) et sur la base du crit`ere de Griffith de la MLER. La taille maximale d’un d´ecollement dans un stratifi´e crois´e est estim´e dans l’intervalle 40◦ - 60◦ , r´esultat qui est en tr`es bon accord avec pr´ec´edentes observations microscopiques disponibles dans la litt´erature.

Place, publisher, year, edition, pages
Luleå: Luleå University of Technology, 2019
Series
Doctoral thesis / Luleå University of Technology 1 jan 1997 → …, ISSN 1402-1544
Keywords
Fiber/matrix interface, Debonding, Polymer-Matrix Composites (PMC), Finite Element Method (FEM), Linear Elastic Fracture Mechanics (LEFM)
National Category
Composite Science and Engineering
Research subject
Polymeric Composite Materials
Identifiers
urn:nbn:se:ltu:diva-76646 (URN)978-91-7790-496-0 (ISBN)978-91-7790-497-7 (ISBN)
Public defence
2019-12-13, E632, E-Huset, Luleå University of Technology, Luleå, 08:30 (English)
Opponent
Supervisors
Available from: 2019-11-08 Created: 2019-11-08 Last updated: 2019-11-19Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Di Stasio, LucaVarna, Janis

Search in DiVA

By author/editor
Di Stasio, LucaVarna, Janis
By organisation
Material Science
Composite Science and Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 105 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf