Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Artificial Intelligence in Pharmacoepidemiology: A Systematic Review. Part 1—Overview of Knowledge Discovery Techniques in Artificial Intelligence
Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark; Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark.
Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
Show others and affiliations
2020 (English)In: Frontiers in Pharmacology, E-ISSN 1663-9812, Vol. 11, article id 1028Article, review/survey (Refereed) Published
Abstract [en]

Aim: To perform a systematic review on the application of artificial intelligence (AI) based knowledge discovery techniques in pharmacoepidemiology.

Study Eligibility Criteria: Clinical trials, meta-analyses, narrative/systematic review, and observational studies using (or mentioning articles using) artificial intelligence techniques were eligible. Articles without a full text available in the English language were excluded.

Data Sources: Articles recorded from 1950/01/01 to 2019/05/06 in Ovid MEDLINE were screened.

Participants: Studies including humans (real or simulated) exposed to a drug.

Results: In total, 72 original articles and 5 reviews were identified via Ovid MEDLINE. Twenty different knowledge discovery methods were identified, mainly from the area of machine learning (66/72; 91.7%). Classification/regression (44/72; 61.1%), classification/regression + model optimization (13/72; 18.0%), and classification/regression + features selection (12/72; 16.7%) were the three most frequent tasks in reviewed literature that machine learning methods has been applied to solve. The top three used techniques were artificial neural networks, random forest, and support vector machines models.

Conclusions: The use of knowledge discovery techniques of artificial intelligence techniques has increased exponentially over the years covering numerous sub-topics of pharmacoepidemiology.

Place, publisher, year, edition, pages
Frontiers Media S.A., 2020. Vol. 11, article id 1028
Keywords [en]
systematic review, pharmacoepidemiology, artificial intelligence, machine learning, deep learning
National Category
Reliability and Maintenance
Research subject
Quality Technology and Logistics
Identifiers
URN: urn:nbn:se:ltu:diva-80483DOI: 10.3389/fphar.2020.01028ISI: 000556711500001PubMedID: 32765261Scopus ID: 2-s2.0-85088825774OAI: oai:DiVA.org:ltu-80483DiVA, id: diva2:1459462
Note

Validerad;2020;Nivå 2;2020-08-20 (alebob)

Available from: 2020-08-20 Created: 2020-08-20 Last updated: 2025-04-16Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Kulahci, Murat

Search in DiVA

By author/editor
Kulahci, Murat
By organisation
Business Administration and Industrial Engineering
In the same journal
Frontiers in Pharmacology
Reliability and Maintenance

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 39 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf