In this paper we generate word meta-embeddings from already existing embeddings using cross-encoding. Previous approaches can only work with words that exist in each source embedding, while the architecture presented here drops this requirement. We demonstrate the method using two pre-trained embeddings, namely GloVE and FastText. Furthermore, we propose additional improvements to the training process of the meta-embedding. Results on six standard tests for word similarity show that the meta-embedding trained outperforms the original embeddings. Moreover, this performance can be further increased with the proposed improvements, resulting in a competitive performance with those reported earlier.
ISBN för värdpublikation: 978-2-87587-074-2